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ABSTRACT

A Finite Element - Boundary Integral Method for Electromagnetic Scattering

A method that combines the finite element and boundary integral techniques

for the numerical solution of electromagnetic scattering problems is presented. The

finite element method is well known for requiring a low order storage and for its

capability to model inhomogeneous structures. Of particular emphasis in this work

is the reduction of the storage requirement by terminating the finite element mesh on

a boundary in a fashion which renders the boundary integrals in convolutional form.

The fast Fourier transform is then used to evaluate these integrals in a conjugate

gradient solver, without a need to generate the actual matrix. This method has a

marked advantage over traditional integral equation approaches with respect to the

storage requirement of highly inhomogeneous structures.

Rectangular, circular and ogival mesh termination boundaries are examined for

two-dimensional scattering. In the case of axially symmetric structures, the bound-

arv integral matrix storage is reduced by exploiting matrix symmetries and solving

the resulting system via the conjugate gradient method. In each case, several results

are presented for various scatterers aimed at validating the method and providing

an assessment of its capabilities.

Important in methods incorporating boundary integral equations is the issue of

internal resonance. A method is implemented for their removal, and is shown to be

effective in the two-dimensional and three-dimension_ _,_plications.
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CHAPTERI

Introduction

Over the years, integral equation (IE) techniques have been employed for evalu-

ating the electromagnetic fields scattered from various structures. Special cases of

the IE methods are surface integral equation (SIE) methods and volume integral

equation (VIE) methods, which have been the workhorses in computational electro-

magnetics for the past two decades. They have been used to solve the scattering from

simple structures, such as smooth perfectly conducting bodies and homogeneous ma-

terial structures to more complicated ones such as multi-layered coated conductors.

However, the classical SIE and VIE techniques result in fully populated matrices

whose required storage is O(N2), where N is the number of unknowns in the model.

Consequently, as the size of the structure increases, the memory demand may' be-

come much greater than the storage available on existing computing resources. To

circumvent this, the IE may be cast in convolutional form by a proper choice of the

discretization model. The resulting system can then solved via the conjugate gradient

method, using the fast Fourier transform (FFT) to evaluate the discrete integral op-

erator. The use of the FFT requires storage on the same order as the dimensionality

of the scattering body (i.e., O(N_) for three-dimensional scatterers using VIE, where

Nd denotes the number of cells per dimension), but is still lower than that required
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by the fully populated version. This method, referred to as the CGFFT method

has been recently employed by several authors to solve two-dimensional (2-D) and

three--dimensional (3-D) inhomogeneous scattering problems [1, 2, 3]. Nevertheless,

for 3-D applications the storage requirement remains problematic and furthermore,

rectangular grid meshing results in a stair-case approximation of otherwise smooth

scatterers.

In an effort to further reduce the storage requirement, partial differential equation

(PDE) methods were considered, since these methods provide for an O(N) storage

requirement. Among them are the finite difference (FD) methods [4] and finite ele-

ment (FE) methods [5]. Finite difference techniques typically suffer from the same

staircasing problems as the CGFFT methods and may have difficulties in modeling

numerical dispersion when solved in the time domain (TD). Frequency domain so-

lutions (of primary interest in this study) allow for accurate (conformal) modeling

of the scattering structure since, for instance, triangles and tetrahedrals can be used

for discretizing surfaces and volumes, respectively. However, when the finite element

method (or any other PDE method) is employed, the mesh must be truncated at a

distance from the structure on which an approximate or exact boundary condition

is applied.

Various methods for truncating the FE mesh have been employed. Among them

are the simple enforcement of an approximate absorbing boundary conditions (ABC)

at the mesh boundary and the unimoment method. The ABC's are popular because

they result in a banded sub-matrix structure. However, they require additional

unknowns since the enclosure must be placed at a distance approximating the far

field region. This distance may be large for structures with sharp edges and as a

result a large number of unknowns is required, especially for 3-D applications. In the



unimoment method [6], the scattered field in the unbounded region is represented by

an eigenfunction expansion. The coefficients of the expansion are then determined

by enforcing continuity at the circular mesh termination boundary. This method

produces a dense square sub-matrix whose dimension is proportional to the number

of modes. It also requires the truncation of an infinite series which may be slowly

convergent for irregular structures, thus resulting in a large storage requirement.

An exact termination method is the boundary integral equation, first introduced

by Hsieh [7] and McDonald and Wexler [8] in the early 1970's. The method is

heretofore referred to as the finite element - boundary integral (FE-BI) technique

and is the subject of this thesis. The boundary integral equation employs the free-

space Green's function which implicitly satisfies the radiation condition at infinity.

Since the integral equation is exact, the mesh termination boundary may be brought

very close to the scatterer to minimize the meshing of the free-space regions enclosed

by the termination boundary. The main drawback of the method is again the dense

submatrix structure associated with the boundary integral equation. However, by

carefully choosing the shape of the boundary, some of the boundary integral terms

are cast into convolution form. Thus, on employing a conjugate gradient solver,

these integral operators may be evaluated via the FFT as was done in the CGFFT

method. The required storage of the boundary integral is then reduced toward O(N)

and allows for the accurate solution of large inhomogeneous scatterers as well as small

targets.

In this thesis, the FE-BI technique (presented in general terms in chapter II) is de-

veloped for two-dimensional and axial-symmetric structures. The two-dimensional

case is based on [9]. Chapter III contains a FE-BI formulation for rectangular enclo-

sures, leading to simple boundary integrals some of which have convolutional form,



thus leading to a reduction in the memory requirement. In chapter IV, circular and

ogival enclosures are considered. For the circular boundary, the boundary integral is

entirely convolutional in form and an O(N) storage requirement is thus achieved at

all times. Circular enclosures are consequently preferred for storage efficiency if the

structure's outer boundary does not substantially deviate from a circle.

In chapter VI, the FE-BI formulation is developed for axially symmetric struc-

tures. The finite element method for this problem was originally developed by Mor-

gan and Mei using the coupled azimuthal potential (CAP) equations for generating

the FE matrix system. In that formulation, the unimoment method was employed for

terminating the mesh, whereas in our implementation the boundary integral equation

is instead employed for this purpose. It is related to Flemings implementation [10]

for circular boundaries, but the present formulation allows for an arbitrarily shaped

enclosure. Consequently the boundary integrals are no longer convolutional and the

storage reduction is in this case achieved by exploiting certain symmetry properties

of the boundary integral subsystem. A problem with the CAP equations is the pres-

ence of a singularity in the finite elements which tends to corrupt the solution, and

a method is presented for circumventing this difficulty.

A difficulty with most boundary integral formulations is the appearance of in-

ternal resonances which corrupt the solution. These resonances correspond to the

eigenvalues of the integral operator, and also occur at the same location as the cut-

off frequencies of a resonator with conducting walls of the same shape as the mesh

termination boundary and filled with the same material as the unbounded medium.

The resonances are particularly problematic when the structure becomes electrically

large, in which case the eigenvalues are very closely spaced. Without any correction,

computations for large structures are unreliable, and a method for correcting the
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resonanceproblem is developedin chapterV.

Specificcontributions of this work include the implementation of the FE-BI for

rectangular, circular and ogival boundaries as described in chapters III and IV in

a manner taking advantage of storage reduction schemes. A new method is also

presented for suppressing the resonance corruption problem existing in almost all

implementations employing some form of a boundary integral equation over a closed

surface or contour. This method involves the introduction of a complex wavenumber

and is demonstrated for both 2-D and axial-symmetric bodies. The implementation

of the FE-BI method for axially symmetric structures as described in chapter VI

is for the most part new and incorporates a scheme for treating the line singularity

associated with the CAP equations. This resulted in real matrices for lossless scat-

terers, a property consistent with 2-D and 3-D implementations of the finite element

method.



CHAPTER II

Fundamental Concepts

In this chapter, some basic concepts are presented as applied to electromagnetic

scattering and its computation via the FE-BI method. At the end of the chapter,

the conjugate gradient matrix solver is also appended.

2.1 Basic Electromagnetic Theory

The overall goal in any electromagnetic problem is the solution of Maxwell's

equations subject to given boundary conditions. In the frequency domain, Maxwell's

equations in free space are

where

b B

V × E = -jwl_H (2.1)

V x H = jweE (2.2)

V-(eE) = 0 (2.3)

V.(/_H) = 0 (2.4)

E(_) = electric field strength [Volts/meter]

H(V) = magnetic field strength [Amperes/meter]

e(_) = electric permittivity [Henrys/meter]

(2.5)

(2.6)

(2.7)

6



p(_) = magnetic permeability [Farads/meter] (2.8)

Note that the last two equations, which are based on Gauss' law, can be obtained by

taking the divergence of the first two equations. Thus for time harmonic fields, only

the first two of Maxwell's equations are needed for a unique solution of E and H-.

By substituting (2.2) into (2.1) and vice versa, we obtain

5v_7 x x E-- w2eT = 0 (2.9)
#

1_7 --__7 x x H w2/IH - = 0 (2.10)

which are commonly referred to as the vector wave equations. The), must be solved

and are subject to the boundary conditions on the particular scatterer as well as

the radiation condition. Typically when solving (2.9) and (2.10) for a piecewise

homogeneous scatterer, the following conditions must be explicitly imposed:

• Continuity of tangential T and H

• Continuity of normal/_H and eE

• Tangential E = 0 on metallic surfaces

For radiation and scattering problems, the radiation condition must be also satisfied.

This condition assumes that the wave must be outwardly propagating and must

attenuate no slower than the inverse of the distance far from the source. Expressed

in mathematical terms,

,.]ijn [r/H- ÷ x E] = 0 (2.11)

lim[ - x = 0 (2.12)

where )7 = _ is the impedance of unbounded medium and ÷ is the unit radial vector

in spherical coordinates.
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The media considered is this work is linear and isotropic and the material pa-

rameters p and e are often normalized to their free space (vacuum) values of e0 -_

8.85 x 10 -a2 H/m and #0 = 4_r x 10 -z F/m. The relative constitutive parameters of

the medium will be denoted by

£

£r = _ (:_._)
£0

#,.= _ ,_._,
\ /

#o

A fundamental solution of the wave equation is the plane wave

E(_) = e-j-£v (2.15)

where k = Wvf _ and w = 27rf is the frequency in rad/sec. For lossy media, _u

and e are complex and thus k = kr + jki, implying an exponentially decaying field.

Note that the required condition, ki < 0, ensures that the wave does not grow

exponentially and, consequently, the imaginary part of p and e must likewise be less

than zero.

2.2 The FE-BI Approach

To solve PDE's (2.9) and (2.10), the scattering body is first enclosed in an artificial

surface S bounding a volume V and for this application all sources will be assumed

to reside in the unbounded region outside S. To satisfy Maxwell's equations in this

volume, the vector wave equation for the electric field in (2.9) is discretized via the

method of weighted residuals. Though not given here, a similar approach in terms

of the magnetic field may developed in a parallel fashion.

The volume V is first divided into Are elements. Within each element, the

weighted residual expression is given by

fff lv =W_,• (v x x _- J_)ev 0 (2.16)
V _ _



whereW/_ is the ith weighting function over the eth element. First, we temporarily

define A as

_= iv x g (2.17)
#

and recall the identity

W_- V x A = V-(A × W:,) + A. V × W: (2.iS)

Using this identity, the first term in (2.16) can be rewritten as

fffw:. V x-AdV'= fffv'(A× W:)dVe+ fffA. V× W:dV"

V" V" V _

S e V e

(2.19)

where the last equality was obtained by invoking the divergence theorem and thus,

S e is the surface enclosing V e and fie is its outward unit normal. Substituting (2.19)

into (2.16) yields

_x-E).(V x W;) w_e dV e-- ( x E) x W;dS e (2.20)
V e I_ S_

and upon rearranging this we have

JJJ _ = /J. -.. -x E). (V x _ii) w_e dVe 3wWi (fie X H)dS" (2.21)

V • _ S t

For scatterers comprised in part of conducting material, the surface boundary of

the volume V is S = Sa + So, where the subscript a denotes the exterior boundary

and the subscript c denotes the conducting boundary. In the assembly of the finite

element equations, the fully discretized form of (2.21) is summed over all elements.

Since the tangential fields are continuous across material interfaces, the surface inte-

gral in (2.21) will cancel everywhere except on S, and So. Thus, unless S e intersects

S, or S¢, the surface integral may be removed.
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To construct a system of equationsfrom (2.21), the field in element e may be

represented as

n

-_ = __, N-_(x,y,z)E_ (2.22)
j=l

m

h × -_ = __, fi x -_j(x,y,z)EJ e (2.23)
j=l

h x _ = E fi x "_j(x,y,z)H_ e (2.24)
j=l

where the superscript t denotes the tangent to the boundary of element e. (These

vector shape functions must also be chosen to satisfy the divergence condition given

by (2.3).) Substituting this expansion into (2.21) and using Galerkin's approach (i.e.,

W"-_',.= N--_/) gives

- #e
j=l S e E Sa

where k = Wv, r_.

nil1E E_ ; [(V x -_i)" (V x N-'-_)- k_--_i'_j] dV _
j=l V c

n

j w N'_ . (fie × -_j )d Se + __, H t e 0 j w'_ . (tic × "_j )d SC (2.25)

j=l S" _Sc

After summing over all elements, our system takes the form

g:: K:',, K:1 K:: K:: o

I_ .. K,,c K,,_ Ba,,

Z'],, I(}a g_,1 I'(}c K']c 0

{E:}

{Et}

{E,}

{E:}

{Ht}

0

0

= 0

0

B_eH[

(2.26)

In these the subscript a refers to unknowns on S_, c refers to the set of unknowns on

Sc and I refers to the remaining unknowns. Furthermore, the superscripts n and t

refer to the normal and tangential components, respectively, of the weighting and/or
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testing functions. The application of the boundary condition on Sc results in the

following system

14(0,%_. rBt Pn "nt]¢*aaI_,all"_ac 0 0

KI_ I(_o Kn I(*l_ 0 0

K2_" K2'_ K2I I<7 0 0

0 0 0 0 I 0

{E2}
0

{<'}
0

{E_}
= 0

{E:}
0

{E_'}
0

{H_}

(2.27)

Clearly, another equation is necessary relating E_ and Ha' on Sa. The FE-BI

approach employs the Stratton-Chu integral equation for the purpose. This equation

relates the electric and magnetic fields via the integral equation

S'

-- __, _ _, 1., r/0T/-(_-')] V'9(F, U)×_oZ(_)]g(_,_)+ _[_ •v' ×

+[,','x_(_)]x v'w,_)}_s'

(2.2s)

where r/0 = _ and g is the free space Green's function. Evaluating this equation

on the surface S_ and discretizing it, we obtain the subsystem

t t t t i

L,_a{E,,} + M:,,{H.I = U'.. (2.29)

which relates the tangential fields on S_. Combining (2.29) and (2.27) we obtain the
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block matrix

K_ _ K_ ' K 5 K_ 0 0

Ktn .tt t ttaa i_.. gai K.c 0 Ba_

Kz_ KL Ku KL 0 0

I( 2 K2'. K2! Kne2 0 0

0 0 0 0 I 0

o v_o o o o M_o

{E2}

{Eat}

{E,}

{E2}

{E_}

{Ha'}

0

0

0

0

0

{u_}

(2.30)

which, after applying the condition on So, can be solved uniquely for the interior

and boundary fields. The resulting system is then solved via the conjugate gradient

method.

After the fields in the solution region have been determined, the scattered fields

are computed by evaluating the integral equation in the far zone. In particular a

quantity called the echowidth is computed for 2-D problems and is given by [11]

a = lim 2,rp I¢'1_ (2.31)

where p is the usual cylindrical coordinate and ¢ denotes either E. or Hz. For three-

dimensional applications, the quantity of interest is the radar cross section (RCS)

and its expression is

= lim 4,_r21_"(_)12
r-oo I_(_)P (2.32)

where r is the radial spherical coordinate. Expressed in component form we have

iS,q= lim 4_rr2IE;(_)I_
"-= IE_(_)V (2.33)

where p and q represent the polarization of the scattered and incident fields, respec-

tively.
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2.3 The Conjugate Gradient Method

The CG algorithm is employed throughout this work and is given as follows for

solving the system Ax = b.

Initialize the residual and search vectors

7b= I1[ _,.c

s = Am (°)

r O) = b-s

s = A% (x)

/_(0) _-- _-1

p(l) = fl(O)s

o o o ]r I1_=11b I1_

Iterate for k = 1,..., Ng

s = Ap (k)

a(k) = 7_-1

¢(k+l) _- _(k) .3t. o(k)p(k)

r (k+a) = r (k) _ a(k)p(k)

s = Aar (k+l)

/3 (_) = 7_-_

p(k+l) = p(k) + 3(k)s(k)
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Terminate when k = Ng or _ < tolerance.

The given tolerance must be used with caution. In each of the FE-BI techniques

developed, the excitation b is only partially full. If the simple preconditioner of divid-

ing by the diagonal value is employed, then those rows associated with an excitation

component of zero will consequently not scale the excitation. In other words for

those rows, b will not change in value while the matrix itself does. As a result, the

residual error will be scaled differently and, consequently, the tolerance criterion will

be scaled differently as well. This may lead to artificially small normalized resid-

ual errors and cause the convergence criterion to be satisfied before convergence is

actually achieved.

One way to avoid this is to compute the far field in terms of a at one or more

angles every few iterations and compare the current value to the previous one. When

the difference is sufficiently small for 15 or 20 consecutive iterations, convergence is

assumed to have been achieved.



CHAPTER III

A Finite Element- Boundary Integral

Formulation for Two-dimensional Scattering with

a Rectangular Termination Boundary

3.1 Introduction

In this section an FE-BI method is developed for two-dimensional scattering in

which the exterior boundary is rectangular in shape. This enclosure ensures some of

the boundary integral terms are convolutional and are therefore amenable to evalu-

ation via the FFT in the conjugate gradient solver. Results are presented for several

structures.

3.2 Analysis

Consider a cylindrical body of arbitrary cross-section and composition illuminated

by the plane wave

3,-c(_)= _¢70(_)= _._jko_cos(e-oo) (3.1)

as indicated in Fig. 3.1. To evaluate the fields scattered from this object, two

boundaries are placed tightly around the body as shown in Fig. 3.2. Inside the outer

boundary, the Finite Element Method is applied to solve the tIclmholtz equation

15
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Figure 3.1: Geometry of the scatterer

Figure 3.2: Partially discretized body
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givenby

where

v. [o(_)v¢(_)] + kJ,,(_)¢(_) = o (3.2)

for E-polarization and

¢(_) = Ez(_)

1
_(_) -

_(_) = _,(_)

(3.3)

(3.4)

(3.5)

¢(_) = Hz(_)

1
v(_) = --

u(_) = _,(_)

(3.6)

(3.7)

(3.8)

for H-polarization. Also, ko = w_vffi-__o_ois the wave number, and pr and e_ are the

relative permeablility and permittivity, respectively.

The appropriate boundary condition is enforced on the surface of the impenetra-

ble boundary, while the radiation condition is satisfied implicitly by evaluating the

integral equation

¢(-fi)=¢"_c(,,-_r,{G(-_,'fi')[_---_¢(_)] -¢('fi')[o-_G(-_,-d')]}dl' (3.9)

on the boundary Fa, where

G(_,_') = -LH(2)(koI_- _'1) (3.10)
4

is the 2-D Green's function in which H(2)(.) denotes the zeroth order Hankel function

of the second kind. Furthermore, ff and _' are the usual observation and source

position vectors, respectively, and

IP- ffl = k/( x- x') 2 + (Y - Y')_ (3.11)
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Symbol Description

N,

Nb

F_

Fb

F_

(xo,,yo,)

(xb,, Yb,)

number of nodes in the finite element mesh

number of elements in the finite element mesh

number of nodes on ['a or Fb along the x-direction

number of nodes on Fa or Fb along the y-direction

total number of nodes on Fa

total number of nodes on Fb

No+N 

4

4Ei=l Fc,

coordinates of a point on contour Fa,

coordinates of a point on contour Fb,

Table 3.1: Definitions for the finite element mesh

The normal derivatives are taken in the direction of the outward normal of Ft.

3.2.1 Discretization of the Object and Field Quantities

In Fig. 3.2, F, is the field/observation point boundary, and Fc is the integration

contour, which is placed midway between F_ and Fb. Also, Fd denotes the contour

enclosing the impenetrable portion of the scatterer. Herewith, each side of F_, Fb

and Fc are numbered counterclockwise starting from the top side, as indicated in

Fig. 3.2. The fields in the region between F_ and Fd satisfy (3.2) in conjunction with

the required boundary condition on Fd. The boundary integral equation (3.9) will

be enforced on F_.
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Symbol Description

Cat

¢b,

¢d

¢I

nodal fields on Fa,

nodal fields on I'b,

nodal fields on I'b,

nodal fields on Fa

region enclosed by Fb and Fd, exclusive

Table 3.2: Definitions of the field vectors

To numerically solve (3.2), it is required that the region within Fa be discretized.

This is done in a traditional manner when employing the finite element method.

The global node numbering starts from the right endpoint of contour Fa_ and pro-

ceeds counterclockwise. The numbering continues beginning at the right endpoint of

contour I'b_ and proceeds counterclockwise. Within Fb, the nodes are numbered arbi-

trarily. The definitions pertaining to the FE mesh are given in Table 3.1. Each node

corresponds to an unknown field value to be determined. It is important to associate

the unknown field values corresponding to the various node groups on contours F,

and Fb by using different variables. The labeling scheme is given in Table 3.2, and

this discrimination of the nodal fields is required, since they are treated differently

in the analysis.

3.2.2 Derivation of the Finite Element Matrix

One of several approaches may be used to generate the finite element matrix, such

as the variational approach or the method of weighted residuals. In this development,

we will utilize Galerkin's method, which is a special case of the method of weighted
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residualswith the distinction that the testing functions are the sameas the basis

functions.

Proceedingwith the finite elementanalysis,wemay rewrite (3.2) as

OOx [v(x'Y) _¢(x, y)] q-_yyO[V(X,y)_-_¢(x,y)]--Fk_ou(x,y)¢(x,y)=O (3.12)

the residual of which is given by

R = -O--xOv(x,y)__x ( y)j_ _0 v(x,y) ¢(z,y) -koh,(x, y)¢(x,y) (3.13)

The field within F, may be represented as a summation of piecewise continuous

functions and, thus, may be written as

N.

¢(z,y) = _ ¢_(z,y) (3.14)
¢----1

where ¢_(x, y) is the field within element e. It is expanded as

n

¢'(x,y) _ _] N;(x,y) ¢3 (3.15)
j=l

where N_'s are the standard shape functions (found in any standard finite element

book), ¢_'s are the fields at the nodes, and n is the number of nodes per element

(n = 3 for linear elements considered here). The weighted residual equation for the

eth element is defined by

f/N:Rdzdy=O i= 1,...,n (3.16)

S •

where S _ denotes the surface area of the eth element. Inserting (3.15) and (3.13)

into (3.16) yields

[/
i=1 S,

i= 1,2,...,n (3.17)
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Further, by using the identities

-_ Ox _xa__,o_ I _ l,v-_; N;) , _, ox;

N:O ( ON;_ a [ 03,_" "_ ON:O.,'v;

and the divergence theorem

//(o.o.)
where C e is the contour enclosing the eth element, (3.17) becomes

f] { ON, ON_ ON, ON_ k:uN, 5_e) ¢_ dxdy
,=iS _ [v"_x Ox + v Oy Oy

oAT. ON;A
j=l

This may be written in matrix form as

i = 1,2,...,n

where

and

and

Ace e = b•

/{ ON[ ON; ON[ ON; k2ouN:N_) dxdy[Ae ]o = _ v _ _ + V -_y -_y

{be},= = N:¢; vz-_ x + vWuj ._ dl

For linear triangular elements, Ni _ are given by

1
e_ __ aeN: - 2_e( , + b_x+ c_)

i= 1,2,...,n

= _-(b_c;- b;q)

c

1 x 1 y_

1 zl y_

1 _ y_

(3.18)

(3.19)

(3.2o)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)
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C C C e C

a, = xjy k- xky j

c c

b_ = y.7 - Yk

¢i = X k -- Xj

(3._,)

(3.28)

(3.29)

where (z_, y_) is the coordinate of the ith node of the eth element. From (3.25)

ON_ b_

Ox 2gt _

ON: c7
Oy 2_ _

(3.30)

(3.31)

Substituting these and the formula [5]

f/ P_q_(N_)P(N_) _ dxdy
2f'/_ (p + q + 9),

(3.32)

into (3.23), we find

r_e

[A_]ij = V" (b_.b_.41_,,__ + c_c;)- k:ou_-_(1 + 6ij) (3.33)

where

lifi=j
,Sij = (3.34)

0 otherwise

In (3.33) we have assumed that u and v (the material constitutive parameters) are

constant within each element and are given by u _ and v _, respectively. By summing

over all elements as implied by (3.14), we may write the overall system in block form

as

A,,a A,,b 0 0

Ab,, Abb Abt 0

0 Atb A1i At,_

0 0 A,tt Add

11

¢b

¢I

b_

0

0

0J

(3.35)
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In this, the values of the elements in the submatrix Apq are the contributions asso-

ciated with the nodes in group p which are connected directly to the nodes in group

q.

One can easily show that the line integral contribution (3.24) of those elements

vanishes everywhere, unless the element has a side in common with F_. As a result,

b' contributes only from the boundary Fa of the finite element region, as indicated

by the presence of the vector ba in (3.35). Without a priori knowledge of the total

field on that boundary, b_ cannot be determined. We may, however, provide the

appropriate condition on this boundary by utilizing the integral equation (3.9). This

amounts to replacing the first block-row of the matrix (associated with Ca on F,)

with a discrete form of this integral equation.

3.2.3 Evaluation of Boundary Integral

The boundary integral in (3.9) may be written as a summation of four integrals,

one for each side of the contour Fc as

(3.36)

0 0
where the derivatives along the x and y directions, denoted by _ and b-_-_, re-

spectively, have been left in this form for the later convenience of determining them

numerically. More explicitly, we have

¢(x, uo, ) = ¢'"°(x, )
3 3
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- - - ¢(z, yol G(z - x, Yol, ycl dx'
¢1 3 3

[ ,o ]- fr_ a(x,_o.,y._,_') ¢(_,y') + ¢(_c_,y )_,a(_,_,_o, ,y') du'

(3.37)

and

(3.38)

where the first subscript on x or y refers to the contour (a, b or c), and the second

refers to the contour number (see Fig. 3.2 and Table 3.1). It is noted that the

arguments of the Green's functions have been modified to imply a convolution when

appropriate, and this representation will be used throughout.

The normal derivatives of ¢ may be evaluated via the central difference formulas

0 1

On=¢(x_,y') = _ [¢(xa, y')- ¢(xb, y')]-4- 0(_ 2) (3.39)

0 , 1

_n_ ¢(x 'Y_) = S [¢(z', y,) - ¢(z', y,)] + O(A 2) (3.40)

where A is the displacement of F. from Fb (A is usually less than one tenth of a
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wavelength).Substituting (3.39) and (3.40) into (3.37) and (3.38), we obtain

¢(x, uo,) = ¢'"c(x,yo, )
3 3

c, 3 3

- K+a(:r,xc_,Ya, Y)¢( o2,y)-I¢'xG(x,xc2,Yo_,Y)O(xb2,Y'
c2 3 3

- /_ [K:_(_-_,,_o,,_)o(_,,_o_)-I_:_(_-_,,_o,,_)_(_,,_)]_'
ca 3 3

,,, ]- I'(_G(x,x_,,yo 1 y )¢( o,,y')- K+G(x,xc, y=, y )O(.rb,,y') dy'
c4 3 3

(3.41)

and

O(xo2,y)= ¢'"°(zo2,y)
4 4

- _ [K:_(_o_,_,,_,_)o(_,,_.)-K:_(_o_,_,,_,_c_)_(_',_)]_'
¢1 4 4

jr[ , , , ,]- 1(+a(xo2,_2,y-y)¢(_o2,v)-K;a(xo_,_,y-y)e,(xb_,y) dr'
¢2 4 4

c3 44

c4 4

(3.42)

in which

1 1 0 (3.43)K_ = S + _&'

1 1 0 (3.44)
U_ = -_ + 20y'

Assuming a pulse basis expansion for the nodal fields (i.e., piecewise constant func-

tions centered at nodes on contours Fo and Fb), a midpoint integration may be

performed for the evaluation of the integrals in (3.41) and (3.42), to obtain

¢(x_,Vo) '"°, = ¢ (_,Uo_)
3 3
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-A ___ LK-G(x,- xj,y_, K_+G(x, xj,y_,
j=l 3 3

Ny

j=l

N:,

-zX_2
j=l

N_

-_
j=l

K _G(z_,xc,,vol, y_)¢(xo,,y_)- KgG(x,, zc_,uo,, vj:e :_b,,y,)]
3 3

[K_G(x,- xj,y,,l,yc3)¢(xj,y,,_)- K_G(x,- xj,y_,,yc_)¢(xj, yb_)]
3 3

- 1_ G(xi, x_,,ya_ )]K -G(x_,x., vo_,vj)¢(_,, v_-) "+ , vj)¢(_b,,yj
3 3

(3.45)

and

¢(zo_, yi)
4

Ny

-zx_
j=l

N_

j=l

Nv

-,_
3=1

N_

j----1

= ¢'"'(zo_, v_)
4

K -G(xo_,zj, w, vo_)¢(zj,w_) - K:G(xo_, _, w, w_)¢(_, w_)]

K _.a(zo_, zoo,y_- v_)¢(zo_,vj) - 1CG(zo_, _o_,v_- yj)¢(xb:, vj)]
4 4

K _G(z=_ ,xj,yi,y,_)¢(xj,yo3) - K_G(x_,x},yi,y,_)¢(zj,yb_)]

K:TG(x.I , x., yi - yj)¢(x.,, yj) - K+G(x,,2, x_,, y_ - y._)¢(xb,, yj)]

(3.46)

In these xi and Yi denote the ith matching/testing points corresponding to the nodal

locations on F_, while xj and y.i denote locations on Fb. We recognize some of the

terms in (3.45) and (3.46) as discrete convolutions amenable to numerical evaluation

via FFT. The subsystem (3.45) and (3.46) may be written more concisely as

¢al _,,c
-rn|

¢a2 _,.c
ra;_

¢a3 _,.c
"ra 3

¢4, _,.c

S_bl

T_bl

SLb_R_

T_b,

Cq'l
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+
T_b, SLb2 T£b3 S+o_b,R_

S + R x T_3b 2 S:3b 3 T +a3bl a364

T_ =%+n_ T:,_3 S:._,

(3.47)

with the various parameters to be given explicitly later. The matrices R:,_ simply

reverse the order of the unknown vector so that the convolutions may be performed

properly. This is required solely because of the employed counterclockwise nodal

numbering scheme.

Since

the vector

(¢b')last = (¢b,)first {

i = 1,2,3,4

j = 2,3,4,1

(3.48)

T

can be related to the actual unknowns on the contour Fb via a transformation Db as

¢_ = DbCb (3.50)

and (3.47) may then be written as

(I + L==)¢= - L,,_DbCb = ¢_c (3.51)

or

(3.52)



28

where

and

I + L_. =

La b -.-

1+ Sg,b, T+b= So+,b,n. T_,b,

+ T + S_2b, R_T_b ' I + S_2b_ .2b,

S_s,R* T_b2 l+S_+b3 T_b,

+ Tgb2 s:,b3n. Y&_a I bl

T+b, S:,b, T_b3 +S,2b_ R_

S,,+b,R,: T_b_ S:3b_ T +3364

T + S[.b_R_ T[,b_ S+ J

1

a4bl a464

(3.53)

(3.54)

After replacing the first block row of (3.35) with (3.51), the complete system may be

finally written as

I + L°_

A b,,

0

0

--LabDb 0 0

Abb Abl 0

Alb An Aid

0 Adl Add

to be solved via the CG algorithm.

0. 07°

¢b 0

¢_ 0

¢_ 0

(3.55)

The elements of A BI defined above may be evaluated via the discrete Fourier

transform. Specifically, we have

± { a)]DFT[¢_] } (3.56)S_,b,3 Cb, = DFT-' DFT[G(x, y,,,, Yb_ ) -4- G,_(x, y_,, Yb,

S_a3b_ Cb_ = DFT-' DFT[G(x,y,._,yb_) t:G,_(x,y,_,yb})]DFT[db]] (3.57)

4 4 4 4
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S + 4)b_ = DFT -1 {DFT[G(x_,,xb_,y)+ G_(x_,,xb:,y)]DFT[¢b_]}
a4 624 4 4 4

in which DFT denotes the discrete Fourier transform operator• Also

(3.59)

(3.60)

G,:(x,x',y,y') - A O2 ,G(z, z, y, y')

_/(x_x,)2+(y_y,) 2 (x-x') (3.61)

AO

a_(:_, z', y, y') _ 20y ;a(z' z', y, y')

-- (3.62)
Special cases of the convolution operators for the chosen mesh are given as

G_:(xa2,xb2,y - y') =
4 4

f
Xa 4

xb2 IA _ (3.63)
4 4 _ Xa2

G_(z - x',yo, ,yb, ) =
3 3

T-_ko3 lYe, - yb, IA ]Y_' (3.64)

(vo, Yb_

and the corresponding expressions for G are implied by the arguments in the previous

two equations. Additionally, the upper coordinate in the braces corresponds to the

upper sign and likewise for the lower one.

The cross-term element submatrices are given by

[r_,] = c(_,,_,,yo,,yj)±a,(_,,_,yo,,y_) (a.65)
4 ij 4 3 4 3

[T:_b, ] = G(Xa_,xj,Yi, Ybl)'Jr-Gv(xa2,xj,yi,yb,) (3.66)
a ij 4 3 4 3
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with

and

G,(xi, zb_, y_,, yj) =
4 3

+% - f
Xb 2

(3.67)
4 _, Xb 4

Glt(xa 2,xj,yi,ybl ) =
4 3

j 3

q=_ko
i(xo_ - xj)_ + (v;- Yb_)_

(
]Yi -- Yb, ]/k _ Yb3 (3.68)

3 [, Yb,

where again the corresponding expressions for G are implied by the arguments of the

previous two equations. Making the substitutions

and

)_ (i ')2A2 (3.69)
4

(y_, _ yj)2 = j2A2 (3.70)
3

(3.71)
i(x,- xb_)2 + (yo] --yj)_ = A¢(i- ½)_ + j_

(xo_ - xj) _ = j2A2

(yi ys, )_ (i , 2 2__ = -_)A
3

i 1)2=_ (_°._- _)_ + (Y'- Y%')*=/"_/J_+ (i -

we may write G_ and G_ as

G,( x, zb_ , y. , , yj ) = T s ko
4 $ _/(i- ;)_+ j_ li- ½1A2 ( Xb4

(3.72)

(3.73)

(3.74)

(3.75)

J
Gy(Xa_ ,Xj,Yi, Yb_ ) = z_'_ko

- _ /li- ½lA (3.76)
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to be used in the actual implementation of the system. Since each of the above

relations are similar, we are required to store only one of them and alter the signs

accordingly. It should be noted that, however, this is not the most efficient method

of storage. Storing only a few of the cross term values and using an interpolation

scheme will reduce the storage considerably. Of course, an interpolation table of

(3.75) and (3.76) will lead to a substantial reduction in memory at the expense of

some computational efficiency.

Assuming that the positive sign is chosen in equations (3.75) and (3.76), we have

4 4

T+ b2 _ _/'+ b2
3 3

4 4

T+l b4 = "J"_ b4
3 3

(3.77)

Choosing the positive sign for the (3.63) and (3.64), we also find

+ +
S.lbl = S_lbl

3 3

+ _. Sash2Sa2b2
4 4

S+ = SLba3bl l
3 3

S+ --. S+
a462 a462

4 4

(3.78)
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Thus, the elementsof A Bt may be written as

I + L=a =

Lab -_-

I + s:_b, 7-o+_2 s+_R:

7-o+_, s% ny 7-o+,_3

s+_, 7-;,_ S:,_:R:

7-a+l b_

S_ b, R_

7-a+_b,

1 + S_,b,

7oT_,

7-_b,

s_+,b,

(3.79)

The elements of the adjoint of A BI required in the implementation of the CG algo-

(I+ L.:)° =

(L.bDb )a =

rithm are

I+ (s_,_,)°

(7-o_++)°

RT[.¢+ _a
x _al b3 ]

(7-o+_,)°
.1

!

D_

7_+)° r +)°( .,_, R.(SL_,

I + (S:,_,)° (L+_b.)o

(7-.+_)° I + (S£_)°

T + )a + a

+ )o )° )"

(7-_)° (S:_) ° (7-:,_.)°

r -)o )°

(7-a,b,) r - )o _- a- ° n_ (So,_, (o,_,)

(Lt_,)°
T + an_ (S;,_)

(7-o,%)o

I + (S_b.) °

(L:_,)°

rS-)O

(7-_.)°

(sLy,)°
(3.80)

3.2.4 A CGFFT Implementation

The conjugate gradient algorithm presented in section 2.3 is employed for solving

the FE-BI system (3.55). The required numerical computation of Az and A°z are
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performedby first decomposingthe systeminto a summation of two matrices; one

involving operatorsassociatedwith the boundary integral and another involving the

elementsof the finite elementmatrix. Thensystemmatrix-vector products maythen

bewritten as

{s} = {s}B/+ {*}_E (3.81)

where

and

I + Laa

0
{+}Bx=

0

0

0

Ab,_

{,.S}F E =

0

0

For tile adjoint operations, we have

8}B I =

and

S}F E ---

L,,bDb 0

0 0

0 0

0 0 0

I+L_

DT L_b

0

0

0 0 0

Abb Abi 0

Alb All Aid

0 Adl Aria

000

000

000

000

o AL o o

0 A_b A_b 0

0 A'_t A]I A_I

0 0 A_d A$j

o z,]
0 Z2 I

I

0 za [
i

Z4

Zl

Z2

Z3

Z4

Z2

Z3

24

Zl

Z2

Z3

Z4

(3.82)

(3.83)

(3.84)

(3.85)
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In each case, the operation is performed such that only the resulting vector {s} need

be stored.

3.3 Computational Considerations

The FE-BI method for rectangular enclosures is efficient in terms of memory

usage and computation time, and each of these aspects is discussed in detail below.

3.3.1 Storage Efficiency

The fundamental advantage of this method is the reduction of storage require-

ments, so that the scattering by electrically large bodies may be evaluated. To show

that the low storage requirement of O(Ng) is assured, we refer to Tables 3.3 and 3.4.

These contain a list of all major memory consuming variables. A summarized list

is also given in Table 3.5. Specifically, Table 3.5 includes the memory requirements

pertaining to the finite element matrix (FE), fast Fourier transforms (FT), boundary

integral cross terms (Cross) and conjugate gradient variables (CG). Arc is one less

than the number of elements connected to a particular node, and a typical value of

5 is used here.

To put the quantities of Table 3.5 in terms of Ng, the total number of nodes, we

consider two special geometries. The mesh in Fig. 3.3 corresponds to a penetrable

body, while that of Fig. 3.4 corresponds to an impenetrable structure tightly enclosed

by the picture frame. Within each special case two extremes are considered; a mesh

corresponding to a square object (N_ = N_) and a long strip (N_ >> Nu). In each

case, Ng is assumed to be large.

Alluding to Table 3.6 the total storage is O(Ng) for the square region, but is

somewhere between O(No) and O(N_) for the (N_ >> Nu) case. This is based
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MemoryConsumption

variableltype[count comment

Mesh

Xg R Ng

Yg R Ug

Nglob I 3N_

X coordinate of global nodes

Y coordinate of global nodes

Node-element connectivity

Pointers

ABint

Pnodes

dmatl

I Nob

I Pnum

I Ng - Nob

Observation and integration points

Nodes on conducting bodies

Element material properties

Finite Element Matrix (FE)

Ar C ,,_(_)(Ng-N_,)

col I ,-,(_)(Ng- Na)

row I Ng - No

Non-zero values of FEmatrix

Column pointer of FEmatrix

Pointer to rows of FEmatrix

Conjugate Gradient (CG)

Phiz C Ng

CG1 C Ng

CG2 C Ng

CG3 C Ng

q C MAX(N., N_)

phiinc C Na

Unknown vector

Residual vector

Search vector

Temporary vector

Temporary vector

Incident field vector

Table 3.3: List of major memory-consuming variables
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MemoryConsumption(continued)

code

variable type count comment

Fourier Transforms (FT)

FTHxl C 2N_

FTHx2 C 2N_

FTHx3 C 2N_

FTHx4 C 2Nx

FTHyl C 2N_

FTHy2 C 2N_

FTHy3 C 2N_

FTHy4 C 2N_

FT C 2MAX(N_, N_)

WR a 2MAX(N_, N_)

WI R 2MAX(N_, N_)

Fourier transform along x-direction

Fourier transform along y-direction

FT of unknown sub-vector

Temporary array

Temporary array

Cross-Term Matrices (Cross)

PQp C

PQm C

,_ MAX(Nx, N_)

,-, MAX(N::, N_)

Legend

R = REAL*4

C = COMPLEX

I = INTEGER*4

Table 3.4: List of major memory-consuming variables (continued)
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Major Memory Consumption(N_ >__Nu)

Type CountItem

FE COMPLEX

FT COMPLEX

Cross COMPLEX

CG COMPLEX

(N_--q_-)[N.-2(_ + :V_)]

12N.+ SN_

2N:

4Ug

Table 3.5: Summary of major memory consumption

Major Memory Consumption: Penetrable

Item [ N_=N v N_>>N v

w

FE ( __,_+A. 4_/'_g), 2 )(No-

FT 20 V/'_g

Cross 2Ng

CG 4Ng

(N2__)Ng(1 2Nv+2 )

12Na/(m u + 2)

2(m./m.)2

4N.

,,_ 9Ng ,,, 2( N__.__)2 + g_ 7A_Nu+2 6 2+Nv "_-

Table 3.6: Summary of major memory consumption: filled mesh



38

/A/ZZ/A/

/,//
///×_2 7

X>'/_ ZZ// 7
',,J///I//

Figure 3.3: Example of the mesh of a penetrable structure

Figure 3.4: Example of the mesh of an impenetrable structure



39

on the assumption that all crossterms are individually stored, but by using an

interpolation table, the O(Ng) memory requirement can be assured regardless of the

value of N, with respect to Nu. In Table 3.7, more dramatic results for the storage

of the cross term are listed. In this case, all of the unknowns are on the outer two

boundaries, so it appears that the storage is O(A_) for the square case. One must

note, however, that the factor multiplying the Ng term may be quite small. The strip

case, on the other hand, requires an O(N_) storage. This case would be an unlikely

candidate for the use of this method, since that structure would be handled much

more efficiently via a direct implementation of the CGFFT method. As noted above,

the storage of the cross terms may be brought down to O(Ng) for all cases by using

an interpolation table, and this will certainly be necessary in a 3-D implementation.
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Major MemoryConsumption: Impenetrable

[N==N,j N= >> N_,Item

FE

FFT

Cross

CG

5N./2

N_/32

4N_

("_ ' )g.12

3Ng

g_18

4gg

,,, N_/32 + 8Ng ,.., N_/8 + 17Ng/2

Table 3.7: Summary of major memory consumption: open mesh

3.3.2 Computational Efficiency

Since the primary importance of the FE-BI method is storage reduction, a com-

parable level of efficiency with alternative methods is a bonus. A method for which

a fair comparison may be made is the standard CGFFT. This requires a 2-D FFT,

which is slower than using multiple 1-D FFTs for large bodies. We compared the

two methods for a specific penetrable scatterer using an Apollo 3500 without code

optimization. The pertinent CPU times are compared in Table 3.8. The comparison

provides only a relative measure of the speed difference.

3.4 Far Field Computation

The scattered fields may be computed as

09 --4 _ 0 G --,
dl' (3.86)
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Body Properties

T/I (s) l

FE-CGFFT

I HTotal

155 1333

Legend

Composition Dimensions

dielectric 2A x 2A 8.6

er =4 -j.1

T/I = time/iteration

I = numberof iterations

CGFFT

T/I(s) I [ Total

170 33 5610

Table3.8: A comparisionof computation efficiency of the FE-CGFFT with the
CGFFT method

Using the discretizationschemedevelopedearlier, wehave

¢°(x, y) =

+ _2

+ _r_3

+ fv_,

z',y, uo.)¢(z',yo.) - K_+a(x,x',y, yo.)¢(_',Ub.)]dx'

' x ' - Y)¢(Xb2,y )] dy'[K+G(x,x¢2,Y,Y )¢( "2,Y ) ZTa(x, xc2,Y, ' '

[K_+a(z,z',y, yc3)¢(z',y._)- g;a(z,z',y,y_)¢(z',yb_)] dx'

[g;a(z,z_.,y,y')¢(xo,,y')- U:a(z,x_,,y,y')¢(xb.,y')] dy'}

(3.87)

where the definitions for K_ and K_ are as specified previously. Letting

1 [x,+_ G(x,x',y, yc)dx'
(_,u,u_) = A j_,___

1 f_,+_
_3u(x,z_,y) = _ J,,-q a(z,x_,y,y')dy'

(3.88)

(3.89)
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(3.87)becomes

1 f,+_ _¢C(x,x',y, yc)dx' (3.90)

(3.91)

¢'(_, y) =

- / E ([z_(_,_,Yo,)- _(_, Y,Yo,)]{_o,b -[Y(_, y,yo,)+ _(_, y,y¢,)]{_,,),)
(j=l

N_

+ _ ([_'(_,_o,,y) + _'(_, _c2,yl]{¢.2b - [_(_, xc_,y) - _(x, _o_,_11{Chub)
j----1

N_

+ _ ([_(_, _,y_3)+ _x(_,y,y_)]{¢o_}j- [_(_, y,_) - 7"(_,y,y_)]{Chub)
j=l

}+ _ ([_(x. _, y) - 7_(_._,, y)]{¢o,b - [_(_. _o,.y) + _(z. _,. y)]{¢b,}j)
j-_l

(3.92)

valid for all observation points (x, y). To specialize (3.92) to far zone computations,

we must introduce the appropriate asymptotic expansion for the Hankel functions

implied in (3.88)-(3.91). In doing so, we have

where

l_(x,y,y¢, ) = jfo(p)f_(O,y_, )e j_°_,¢°_t
3 3

_"(_.,_o,,y) = jfo(p)f_(o,=o=)¢_.0_,,_,,o
4 ,t

"7_(x, y, y_, ) = -fo(p)fl(O, y¢, )koA sin Oejk°_' ¢o_O
3 3

7_(_,xo2,y) = - fo(p)f:( o,_c_)koAcoso_j_o_,"_"_
4 4

(3.93)

(3.94)

(3.95)

(3.96)

1 f 2j "kop

f°(P) = 4v,_/kop
jkoyc I sin e

3

jkoxc_ cosO

4

(3.97)

(3.98)

(3.99)
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in which (p,0) imply the usual cylindrical coordinates of the observation point. Sub-

stituting expressions (3.93)-(3.96) into (3.92), we obtain

¢_(x, y) = -L(p)

{ _ ([J + ko AsinO] {¢_,}j - [J - ko AsinO] {¢b,}j) fl(O, yc,)e jk°_:'¢°s°
.i=l

g_

+Z
j=l

N_

+Z
j=l

Ny

+Z
j=l

([j - ko/Xcos0]{¢o_b -[J + ko:_cos0]{¢_ b) f_(o, xc_)_j_°_Jsi°°

([j - koAsinO] {¢_3}J - [J + koAsinO] {¢b3}j) fl(O, Yc3)e ik°_'c°s°

([j + koAcosO] {¢_,}j - [j - koAcosO] {¢b,}j) f2(O, xc,)e Jk°y'sinO }

(3._00)

From (3.100) the echowidth becomes

1

4ko
([J + ko AsinO] {¢_a }J - [J - ko AsinO] {¢b, }j) f_(O,y_)c ik°_:J¢°s°

j=l

g_

+ _ ([j - koAcosO] {¢_2}j - [3 + ko AcosO] {¢b2}j)f_(O,x_2)e jk°u'sin°
j=l

N_

+ __, ([j -- koAsinO] {¢,,}j -[j + koAsinO] {ebb}j) fl(O, ycsle jk°x'c°sO

j=l

N_ sin 0 2
+ _ ([j + koAcosO] {¢,,}j - [j - koAcosO] {¢b,}jlf2(0, x¢,)e jk°u'

j=l

(3.101)

3.5 Code Validation

The scattering patterns from several rectangular structures are presented. The

echowidth is computed for each structure and compared to the results of the moment

method. The bodies are discretized at a sampling rate of 20 samples/free-space

wavelength.

Results are presented for the following cases:
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• perfectly conducting bodies(Figs. 3.5 and 3.6)

• partially and fully coatedperfectly conductingcylinders (Figs. 3.7 - 3.12)

• compositebody (Fig. 3.13)

In each figure, the discretizedgeometry is shown alongwith the corresponding

results. As seenin all cases,the generatedpatternsusingthe FE-CGFFT formulation

are agreewith the momentmethod data.
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Figure 3.5: E_ backscatter from a .25 × 2_ body
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Figure 3.6: H: backscatter from a .25 x 2A body
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Figure3.7: Ez backscatter from a .25 x 1X perfect conductor with a _/20 thick

material coating containing the properties er = 5. -j.5, tt, = 1
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Figure3.8: H, backscatter from a .25 x 1,_ perfect conductor with a A/20 thick

material coating containing the properties er = 5. - j.5,/_r = 1
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Figure3.9: Ez backscatter from a .25 x 1A perfect conductor with a A/20 thick

material coating containing the properties ¢r = 5. - j.5, #r = 1.5 - j.5
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Figure3.10: Hz backscatter from a .25 x 1A perfect conductor with a A/20 thick

material coating containing the properties er = 5. - j.5, Pr = 1.5 - j.5
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Figure 3.11: Ez backscatter from a .25 x 1A perfect conductor with two A/20 thick top

material coatings. The lower layer has the properties cr = 2. - j.5, #r =

1.5 -j.2, and the upper layer has properties E_ = 4.- j.5, g_ = 1.5 -j.2
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Figure 3.12: Hz backscatter from a .25 × 1)_ perfect conductor with two ,_/20 thick top

material coatings. The lower layer has the properties er = 2. - j.5,/_r =

1.5- j.2, and the upper layer has properties e_ = 4.- j.5,/_ = 1.5 -j.2
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Figure 3.13: Hz scattering from a composite body. Both the perfect conductor and

the dielectric body are A/2 in each dimension. The material properties

are er = 5. - j.5, #r = 1.5 - j.5
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3.6 Summary

A procedure was developed for computing the scattering by 2-D structures. This

procedure combined the boundary integral and finite element methods, and the re-

sulting system was solved via CGFFT. The main advantage of the new approach was

a reduction in memory demand to O(N) compared to O(N _) required with tradi-

tional solution techniques. A detailed map of the storage requirements was presented,

and the principle memory consuming arrays were discussed. Also, the computational

efficiency of the technique was examined and found favorable. To validate the pro-

posed solution approach, several backscatter patterns were presented and compared

with results based on traditional solution methods.



CHAPTER IV

A Finite Element- Boundary Integral Method

for Two-dimensional Scattering Using Circular

and Ogival Termination Boundaries

4.1 Introduction

It is possible to choose other boundaries that result in convolutional integrals,

and in this chapter we consider circular and ogival enclosures. Clearly, a circular

enclosure would be attractive for circular scatterers whereas an ogiva] boundary will

be more attractive for those structures conforming to this boundary. In the case of

the circular boundary the entire integral is convolutional ensuring the O(N) memory

demand of the system provided an iterative solver is used. When an ogival enclosure

is used the integral becomes convolutional only if the observation and source points

are on the same arc, but an efficient storage scheme is again required for the remaining

"cross-terms" 1

In the following sections, the pertinent FE-BI formulations are developed for the

circular and ogival boundaries. Results for several circular and ogival structures are

presented and shown to be in excellent agreement with that obtained by traditional

methods.

1 "cross terms" refer to integrals for which the source and observation points are not on the same
arc

55
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Y

0o

- X

4.2 Analysis

Figure 4.1: Geometry of the scatterer

Consider the plane wave

(4.1)

illuminating a composite cylinder as shown in Fig. 4.1 and we are interested in

computing the scattered field. For the application of the Finite Element - Boundary

Element Method the target is enclosed in a fictitious circular or ogival boundary as

shown in Figs. 4.2 and 4.3. Within the boundary Fa, the finite element method is

used to solve the Helmholtz equation

where

v. [v(_)v_(_)l + k_v(_)_(_)= 0 (4.2)

1

4_(_)= Ez(_), u(_)= )kP#r'-"_ v(_)= er(_) (4.3)
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for E-polarization and

1

4(_) = Hz(p), u(_)- c,(_)' v(_) :/_(_) (4.4)

for H-polarization. The free-space wave number is ko = wx/'poco and /t, and ¢_ are

the relative permeablility and permittivity, respectively. On the boundary Fa the

Helmholtz integral equation

provides the required boundary constraint, implicitly satisfying the radiation condi-

tion. In (4.5)

G(-fi,-fi.) = -_ H_2)( ko]-fi - _]) (4.6)

is the 2-D free space Green's function where Ho(2)(-) denotes the zeroth order Hankel

0
function of the second kind. Also, _ denotes differentiation with respect to the

outward normal, whereas _ and _ are the usual source and observation points,

respectively, and

= x/(z - xo) + (u - yo) (4.7)

4.2.1 Circular Enclosure

Discretization of the Scatterer and Field Quantities

The region enclosed by F_, denoted as Ro, is discretized into N_ finite elements

as illustrated in Fig. 4.2. In the figure, p_ is the radius of the circle and a_ is the

integration angle along this boundary (Further definitions for the finite element mesh

are indicated in Table 4.1, while the definitions of the field vectors are indicated in

Table 4.2.). We note that nodes along P_ are equispaced with angular displacement

A.
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F
a

A

Figure 4.2: Partially discretized body in a circular enclosure

Symbol Description

N.

N,

N_

number of nodes in the finite element mesh

number of unknowns

number of elements in the finite element mesh

number of nodes or elements on Fo

number of nodes or elements on Fd

Table 4.1: Definition of various quantities associated with the finite element mesh
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Symbol Description

CQ

¢o

¢I

Cd

field at the nodes on F_

normal derivative of the field at the nodes on F_

field at the nodes region I enclosed by F_ and Fd

field at the nodes on Fd

Table 4.2: Definition of various field vectors associated with the finite element mesh

and its boundary

Derivation of the Finite Element Matrix

The weighted residual expression over each element may be written as [5]

where

ff

JJ R"W_dS"=O i= 1,2,3 (4.8)
S¢

R" = -O'---xO[u(x'Y) ff--'x¢_(x'y)] - -_yO[U(x,y) ff---_¢"(x,y)] - k_ot,(x,y)¢"(x,y) (4.9)

In (4.9), W_ is the ith weighting function associated with the eth element. Substi-

tuting (4.9) into (4.8) and invoking the divergence theorem yields

S _ -U[Ox Ox + _ -_y ] +k°v¢ Wi dgt_

+ fro W:¢_dr" =0 (4.10)

where F _ denotes the contour enclosing the eth element. Additionally,

(4.11)

is zero outside element e. Summing over Are elements we obtain

= -_ {ox ox + ov ov J + koV¢w; dflo
N. Na

+ w_ ¢ dro + W, ¢ dr_ = o
s=l _ = "n

(4.12)
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where the summations over s refer to the elements with sides adjacent to the fictitious

(F_) and conducting (Fd) boundaries.

The integral over the conducting boundary in (4.12) vanishes all cases. This is

obvious when no conductor is present. When ¢ = Hz, the normal derivative of the

field is zero on the conductor and the field unknowns on the boundary are allowed to

"float" (i.e., they are not fixed to a specific value but are determined by solving the

system). Finally, when ¢ = Ez, imposing the Dirichlet condition after assembling the

finite element system results in the elimination of those equations associated with

the integral over Fa.

Proceeding with the discretization, the field and its derivative within each element

may be expanded into a linear combination of shape functions

3

_= E N; _; (4.13)
j----1

3

¢" = _] N; ¢; (4.14)
k=l

Substituting (4.13) and (4.14) into (4.10) and choosing W__ = N e (Galerkin's method),

we obtain

where

and

3 3 3

E a,5o;- E E b,5(k)¢;= o
j=l k=lj=l

(4.15)

= { [ON._ ON] ON e ON, l_ k2ovN._N_} dl'_ e (4.16)"_J sf/ "[ o_ ox + ou ou J

b'5(k)=/r JV;N;dl _

For linear triangular elements, N e are given by

1
N_= _fl-;(ai+ b_x+ cTu)

(4.17)

(4.18)
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with

-_e I /le e e e= 5(oicj -- bjci) (4.19)

e e e _ e

ai = x.iYk - xkYi (4.20)

Yj - Yk (4.21)

c e e

ci = x k - xj (4.22)

and (xT, y_) being the coordinates of the ith node of the eth element. From (4.18)

ON, b7
Ox - 2fl _ (4.23)

ON[ c_
- (4.24)

0y 2_ •

Using (4.23), (4.24) and the identity

/ P!q_(N_)P( N_)qdxdy = 2fl •
S_ (p + q + 2)!

(4.25)

aij in (4.16) reduces to

_ u _ (b%_ _ _ Q_
a U - 4Q-----_,,,,j + qcj) - k2ov'--_(1 + _SU) (4.26)

where

¢

1 if i = j

t 0 otherwise
(4.27)

We note that in deriving (4.26) we have assumed that u and v (the reciprocal of the

material constitutive parameters) are constant within each element and are given by

u _ and v _, respectively.

To find an algebraic expression for bi_, we may reparametize the integral in (4.17)

as

l+A s sbik = P; P_ r, da (4.28)
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whereP_ and P_ are given by

Px_(a) = 1 o-a_ (4.29)

P_(o) - a - a_ (4.30)

Integrating, we have

raA 5 (4.31)

Substituting the previous equations into (4.12) a sparse matrix is obtained for

the nodal fields that has the form

A.a A_I 0 -B_

At_ All Ala 0

0 Adl Aaa 0

0 0 0 0

Ca

¢i

Cd

¢o

0

0

= (4.32)

0

In this, the values of the elements in the submatrix Apq are the contributions asso-

ciated with the nodes in group (region or boundary) p which are connected directly

to the nodes in group q. Also,

Na ram

[B..lik = _ b,"k = ---_-(6i-,,k + 45ik + 5i+,,k) (4.33)

The last row in (4.32) has been intentionally left blank to imply a need for another

set of equations relating the fields and its derivatives on Pa. This additional set of

equations is produced by discretizing the boundary integral equation.

Evaluation of the Boundary Integral

The boundary integral in (4.5) may be rewritten in cylindrical coordinates via

the transformations

I_ - _.1 = I_(pcos _ - p. cos c_) - 9(p sin c_ - pasin o_,,)1

= _/p2 + p2a _ 2ppa co s(_- ¢_a) (4.34)



63

where(p,a) and (p,, ha) are the usual source and observation points in cylindrical

1_- _,1 = 2p]sin (_)1

coordinates. For Ipl= [p_[,

(4.35)

and the Green's function and its normal derivative may be written as

G(fi, ft.) = -4 H_) (2kop, sin (.e%__)) (4.36)

On, G,..fi,..fi,_,O( _ = Jk°H(2)41 (2kop_,sin(e-=_))sin(_-v_ ) . (4.37)

We may now write (4.5) as

½¢(p,a) = ¢inC(p, c_) - fo(P, a) + f,(p,a) (4.38)

where as a result of (4.36) and (4.37)

fo(p,a) = j f02'_--4p_ ¢(p_,a_)H_2l(2kopasin(-a:-_))do_ (4.39)

• 2'It

f,(p,a) = ¼Pa/o ¢(P_'°")H_2I(2k°pasin(e=_))sin(_-_)da_ (4.40)

¢(p°,oo) =

with

(4.41)

' in (4.38) accounts for the singularity associated with HI2)(.) and theThe factor of

-j: (4.40) denotes principal value.

We may now discretize (4.39) by expanding the field using pulse basis functions

as

/%

¢(Pa,a,) _ _ Pa(a_ -aj)¢j (4.42)
j=l

where

A

0 otherwise

(4.43)
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and A is the angular width of the integration cell as indicated in Fig. 4.2. Thus, the

discrete version of (4.39) may be written as

f0(p,a) = jp,, N,, fo,+__ H! 2)
---_- _ Cj (2kop,_ sin (

j=] J_,-_
z_)) da_ (4.44)

Performing point collocation and letting u' = a - a_, we have

Na

/(a,-.,)+-_ H (2) • u,fo(p, ai) jPa __, _,j (2kopa du'- sin (-_-))
4 J(_,-_:)- _-j=l

which may be written in compact form as

fo(p, el) jp_ Na= --y-  ,jho(o, -
j=l

where

(4.45)

(4.46)

= /(_'-"')+'_ H (2) (2kopasin(_))du (4.47)
ho(ai - a.i) J("'-°')--_

It is clear that (4.46) is in the form of a discrete convolution and can thus be written

a.s

fo(p, a)= DFT-' {DFT(¢). DFT(ho)} (4.48)

where the elements of h0 are given by

{ A{1--j}[ln(k4-_)--l]}
h°(pA) = r(r+½)a H_ 2) (2kop. sin (_)) du'

%-½)a

(4.49)

where in developing the p = 0 term, the small argument approximation of the Hankel

function was used and is given by [12]

_im H(2)(kp)= { 1-j21n(2_) n=Ok o kPlLe)-3"* ';_ n>l
2nn! -- j lr(kp) n

(4.50)
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in which "7 _ 1.781. Through a similar analysis, the field may be approximated by

the expansion

Na

¢(pa, a_) _ _ PA(aa -- aj)Oj (4.51)
j=l

and by substituting this into (4.40), we obtain

where

Nof,(p, ai)=j y_ ejhl(ai - aj)
j=l

f('_'-'_')+-_ H_ :) (2kop_ sin (-_- ) ) sin ( _- ) du'
hl(_ - _j) = J (.,-o,)-?

Clearly, (4.52) may again be written in operator form as

fl(p,a) = DFT-' {DFT(¢)* DFT(h,)}

(4.52)

(4.53)

(4.54)

where

hl(pA) = {

• A
kop, ('_ - sin _) +3 ,_p.

f(tP+})_ H} 2) (2kop, sin (_))sin (-_)du'p-½)-_

where again (4.50) was employed.

Point matching (4.38) at each node results in the system

½¢_= ¢i"c - Io(p, _) + I,(p,-_)

which may be written in operator form as

(4.55)

(4.56)

(4.57)

where

[Laa]ij JP_ ho(cq aj)
-- _-

[M,,,,]O = l_,j JP"kohl(ai_aj )
4

(4.58)

(4.59)
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Or;a2

P.1 Ycl ....... 1

Figure 4.3: Partially discretized body with an ogival enclosure

A final system is obtained by combining (4.57) with (4.32) to yield

A_,, Aal 0 -B_

At,, AII Aid 0

0 Aai Add 0

M_ 0 0 -Lo.

o
I

¢i I = 0¢a 0

+.

(4.60)

which can be solved via the conjugate gradient algorithm to obtain the nodal fields.

4.2.2 Ogival Enclosure

Discretization of the Scatterer and Field Quantities

The region within F°, denoted R,, is discretized into N, finite elements and a

partial discretization is shown in Fig. 4.3 for the circular case. With respect to

Fig. 4.3, the definitions of the various quantities are found in Table 4.3. Further

definitions for the finite element mesh are indicated in Table 4.4, and the field vector

definitions are indicated in Table 4.5.
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Symbol Description

mp

Pap

(]gap

t

Ycp

angular displacement between nodes on F_p

radii of PQp

angular integration variable along F_p

distance between centers of curvature of Fa,

y-coordinate of the center of curvature of Fap

Table 4.3: Geometric quantities in reference to the figure above

Symbol Description

N.

N,

N_

Pa

number of nodes in the finite element mesh

number of unknowns

number of elements in the finite element mesh

number of nodes (=NQa + Na2) on Fa

F_1 + I'o 2

Table 4.4: Definitions for the finite element mesh with an ogival enclosure

Symbol Description

_)ap

_ap

_d

fields

fields

fields

fields

fields

corresponding to the nodes on F_p, p = 1,2

corresponding to the midpoints of the nodes on Fap

at the nodal midpoints on I_

corresponding to region I enclosed by F_ and Fa

corresponding to the nodes on the Fd

Table 4.5: Definition of the field vectors for the ogival boundary
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Derivation of the Finite Element Matrix

The derivation of the finite element matrix follows that described in section 4.2.1

with the exception of the matrix B_a. Consider the ogival boundary as indicated in

Fig. 4.3. The boundary contour Fa is comprised of two arcs labeled F_ 1 and r_ 2,

which form the vertices of the ogive where they meet. At the vertices the unknown

normal field is discontinuous and will therefore be evaluated at the midpoint. Also,

in evaluating the contour integral, the field derivative are expanded in terms of pulse

basis functions, rather than linear functions. This results in a different B_ matrix

and involves the replacement of P_ in (4.28) by the pulse basis function expansion

1 ifO<la-cr_[<5-
Pa(a-o_j) = - - (4.61)

0 otherwise

By integrating in cylindrical coordinates we then obtain

bi_ =/--'(_iij + 6i,j+l), j = 1, i= 1,2 (4.62)
2

where 1" is the length of the eth boundary element along r. and is equal to p,pAp

for Fap, p = 1,2. Performing a summation over all boundary elements then yields

Ne lj

[B,_] 0 = _[_ bi_ = _(Sij + 5i,j+,) (4.63)

where P is the length of the jth element since the jth "node" (associated with the

unknown Cj) is at the center of the jth boundary element.

The remainder of finite element analysis for this case proceeds exactly as in section

4.2.1.

Evaluation of the Boundary Integral

The evaluation of the boundary integral along an ogival contour is similar to

that described for the circular boundary. For integration and observation points
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on the same arc, the integrals become convolutions. On the other hand, when the

integration and observation points reside on different contours, the integrals have no

special form and must be discretized and stored in memory as efficiently as possible.

The distance between the source and observation points in terms of cylindrical

coordinates for points on the same arc is given by

cos(o- a_,) p = 1 2 (4.64)I_- _.l = _/p_+ a. - 2pp_,

When the source and observation points are along different arcs, (4.64) becomes

[-fiq--fi,_p[ = ¢(pcosaq - p,,cosa_,p) 2 + (psinaq - p_sin%p + y_ - y_)2

p,q= 1,2 (4.65)

in which the subscript ap refers to the integration coordinates along contour p and

the subscript q refers to the observation coordinates. Also, Ycp is the y-coordinate of

the center of curvature for contour p for p = 1,2. For further reference we note that

(4.65) may be also rewritten as

I_, - L_I =
l

¢(p! + p.22, - 2p_ p,,_ cos(a_ - a= 2,) + t2 :F 2t(p, sin c_,_ - P_2, sin aa2, ) (4.66)

where t = yc_ - Yea and the upper sign corresponds to the upper set of subscripts.

To discretize (4.5), the fields are expanded as

Nal Na

j=l

Pa(a, - %)¢j+} (4.67)
j=Na 1 +1

Na 1 Na

_(p,,,aa) _" __, Pa(ao - aj)¢j + _ PA(aa -- a i)Vj (4.68)
j=l j=Nax +1

where as before

[ 1
P,,(_o - c_s)= {

t 0 otherwise

(4.69)
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and

(4.70)

Substituting (4.67), (4.68) and (4.69)into (4.5) then yields

when the observation point is on F°_ and

(4.71)

N=I c_.i+A l

5=1 "_j

N. l

+ _ ,,+_./:,+",_° p°,,_, o°,)po,d,_o,
j=_ -_, Op°__c°(p_'

N° /ai._.A 2- __, fJ Go(P2,P°2,o_ - _°2)po2dcro2
j=N=I + 1 .,"orj

j=N, 1 +1 .,,aj

(4.72)

for observation on F=2. Performing point collocation at the nodal midpoints, (4.71)

and (4.72) further reduce to

Nal /oti- otj .l- _-

- _ CJ.,o,_o,+__
j=l

Go (pl, p°,, u)p=_ du
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N*I f°'-_,+ _- 0+ Y_Cj+½ __,+_Op_Go(P,,Po,,u)Po, du
j=l a' T

Na foj+_x2- _ CJ Go(Pl,Pa2,°i+_,_,_2)P_2d°a2
j=Na I +1 J OJ

+ _ %_o, O-_oGo(p',Po2,'_,+
j=Na 1 +1

for observation on F, 1 and

(4.73)

½¢(m, o_+½) =
Inc

¢ (m,o_+½)

Nal ¢_I+A 1

-  fo, l,,o, oo,

N°' 9[.%+/"1 i)+ _--_ Cj+ ½ _Go(p2, pa,,cq+},c_o,)p_,dc_,
.i=l "% OP.1

o,-,_ :+-_
- _ f_.,,,,_,,,+_ Go(m,p_,

_t ) pa2 d_l

j=N. 1 +1

+ _ Cs+".,,,,_o,+÷_o_
j=NG 1 +1

_Go(p2,p.2,u)p_2du (4.74)

,1,
where the 5 in the subscript refers to the fictitious "node" midway between the

actual nodes. A system of equations can now be obtained by testing (4.73) and

(4.74) at a sequence of points on the contours. This yields

¼C1 ¢._ i,,_= ¢,.,1+½- {L,,_., + P12_,_

I C inc

m 1- }M,,C,¢,,, _Q,2C2¢.2}

' C _M2_C_¢._ }--_O21 1¢.1-- I (4.75)

which can be alternatively written as

D

Lll P12

P21 L22

Ol

dgal

i _3a2

inc

¢o_+_

(4.76)
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In this, the nonzero values of the upper bidiagonal matrix C are 1, and 5,p+½incthe

value of the incident field evaluated at the nodal midpoints. The matrix D accounts

for the double use of the nodes at the endpoints and the remaining elements are

given by

j_ pp I 1= _(iI- Mpp)

_pq 1= - iQpq

(4.77)

(4.78)

(4.79)

for p = 1,2 in which

= ]'°,-_, + _2-_
[Mm']ii J,_,__,+_ G°(pv'P"p'u)P"p du

_°,-°,+_ 0
[Lpp]ij = j,,_,,+_oL Go(pv, pa,,u)pa,du

= fa,+%[Q.q]_ .,o, Co(p.,po.,,_,+½,oo.)po.d_o.

and

= /aj+Aq 0
[Pt,q]ii ",_, Om Co(P.,P..,'_,+½,o=.)P=.da=.

More explicitly, upon evaluation of the integrals

3.k.__.4 kop_,("_ - sin "4_) + ,_kop._ j i=j

3"k°'_2r'4Ja,-_,+_r°'-_'+_2-e"H_2)(2k°p"p sin _)sin _du i # j

-3"'_-,1 {1 - 37"2[ln ('_kop:ra_) - 1]} i=j

-JP--_r°'-°'+_4Jo,_oj+_ S(o2)(2kop,,psin_) du i#j

kop. HI,)(ko= (ko

[p.:- p: cos(ax, -aa,):l:tsino:._]da_,_l

.P,2 [_,,+a: H_2)(kox/7. _: t.)da_:
= --J "-_., oj

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)
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wherethe uppersign correspondsto the upperset of subscriptson P or Q, while the

lower sign corresponds to the lower set of subscripts. Introducing the definitions

K1 D I (4.88)
I

K 2 (4.89)

the system (4.76) may be combined with that derived via the finite element method

to obtain

Aa_ Aal 0 -Baa

At_ Art Atd 0

0 Adi Add 0

K1 0 0 Ks

£1

¢i

Cd

0

0

0

.

(4.90)

We note that (4.90) can be solved via the CG algorithm to take advantage of the con-

volution operators M and L in reducing the memory requirements. This algorithm

is given next.

4.3 A CGFFT Implementation

In a manner similar to the previous chapter, the matrix vector multiplications Az

and A_z is represented as a summation of matrices, one corresponding to the finite

element portion of the system and the other corresponding to the boundary integral

portion. Thus, a typical product may be represented as

{s} = {s}m + {s}FE (4.91)
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where

8}BI "--

and

A_a

AI°
{$}F E "--

0

0

For the adjoint operations, we have

0

0
{_}B,=

0

0

0 0 0 0

0 0 0 0

0 0 0 0

K1 0 0 K2

AaI 0 B_a

Art AId 0

0 Adct 0

0 0 0

0 0 K_

0 0 0

0 0 0

o 0 K_

2

3

, Z2

] z4

3
Z 1 I

!

,6 2

_3

*4

(4.99.)

(4.93)

(4.94)

and

8}FE "--

A_ A_t 0 0

A]_ A_I A]a 0

0 A_u A_td 0

B.. 0 0 0

2:1

Z2

(4.95)

Again, the operation is performed such that only the resulting vector {s} needs to

be stored.

4.4 Scattered Field Computation

In this section the expressions for the scattered field and radar cross-section are

developed for both the circular and ogival boundaries. The scattered field is corn-
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puted from the identity

from which the echowidth is calculated.

(4.96)

4.4.1 Circular Boundary

The scattered field expression (4.96) may be written as

¢'(p, _) = -L(p, _) + f,(p, _)

where

A(p, _) = J 2_

and

A(p, _)= j f0_"
H_ _, (k%/p 2 + p_ - 2pp_ cos(c_- _a))

_/p2 + p2a __ 2ppa cos(a - a_)

[Pa-- pcos(_ -- 4°)] doo

(4.97)

(4.98)

where the remaining integrals over the subsections must be evaluated numerically

for arbitrary observation. However, for far-field computations (p _ oc), the Hankel

To evaluate the integrals in (4.98) and (4.99) we invoke the field expansions (4.42)

and (4.51). We have

N° r_,+_ H(o2) ( + p_ - 2pp_ - c_ )S0(P,O) = -_Pa Y_ _l,j L,--} ko_/p_ 2 cos(c_ ) dc_ (4.100)
j=l

and

• _ fo,+_-_')(ko_/_,+_- 2_o_os(o-oo))f,(p,_,I= 4kop°E _
j=, J'_,-_" _/p' + p_ - 2pp, cos(o - aa)

[p_ -OCOS(O-a,,)]da_ (4.101)

(4.99)
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functions may be approximated as

V_rkp

and since

f
_/f + p_ - 2pp_cos(_ - _o) ___ p

( p - po cos((_ - c_°)

for amplitude

for phase terms

(4.100) and (4.101) become

f0(p, (_) = -j poA/ 2j e_Jk0, N.
4 Vrk0p _ CJeJk°P°¢°'('_-'_")

j=l

and

pokoA [ 2j "kopNo

/l(e,-)= _ _/-_0pe-' Z_,_cos(.-_,)ek0'-°°'(°-°,)
j=l

Substituting (4.104) and (4.105) into (4.97) we obtain

poA ,f 2j e_J_op [j _ g.,jejk0p.¢o,(,__o, )
G(p,_) = -TV _ L j=,

+ko_ Cjcos(_- _j)ejk°'o¢°'("-°,)
j=l

and from (2.31) the echowidth is given by yields the echowidth

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

N. N. j2
a = (P°A)------_j _ CjeJ_P*¢°'(°-",) + ko _ Cj cos(or - aj)eJk°P*c°'(°-'_,) (4.107)

8rr j=l j=l

4.4.2 Ogival Boundary

Following the same discretization scheme used in Section 4.2.2, (4.96) may be

written as

Nal Na

= -{ _¢fll(p,a,_j) + _ _bfa_(p,c_,oj)¢'(p,_)
j=a j=N. 1+1

Naa Na

- _ CA,(p,-,_j)- _ CM(p,-,,_j)}
j=l j=N.I +1 )

(4.108)
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where

oj+Apflp(p,a,a:) = Go(p, pap,c_,a_p)p_pdo_p
,.," Otj

+&p 0f2p(p, a, o3 ) = --Go(p, p_p, c_, c% )p_p do_p

(4.109)

(4.110)

(4.111)

in which

Go(p, pap, a, o,p)

= -_"(o 2, (koCp2+ p_.- 2ppap cos(a- gap)+ y2p _ 2y_p(psin c_ - pap sin c_.p))

(4.112)

and

0

Op_pGo(p, p_p, a, a_p)

jko H} _, (koCp 2 + P_p- 2ppap cos(a- a.p)-F y¢2p_ 2ycp(p sin c_ - Pap sin oap))

2
4 _/P_ + Pap - 2ppap cos(a - a_p) + y2 _ 2ycp(p sin c_ - p,p sin aap)

¢p

[p.p- p cos(or -o_p)+ Yc, sin c_ap]

(4.113)

and ycp are the corresponding y-coordinates of the arc F_p. Using the large argument

approximation for the Hankel function and the approximation

Cp+ p_p - 2pp_p cos(a- aap)+ Yl + 2y_p(psin o - p.p sin _,p)

/ p for amplitude terms

! p - p._ cos(a - a_p) + ycp sin a for phase terms

for p --* o0, the Hankel function simplifies to

H0(_)(_) _ ,[ 23" e_ikOPe_Jkot_Po_¢o_(o_oop)__¢p,i.o]
V 7rkop

(4.114)

(4.115)
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Similarly,

["o,],.., _j,/ 2j e_ikOOe_ik,,[_p.,,¢o,(,__,,.,,)__,,,i,,O]cos(o_ _ aa,)
Vrkop

(4.116)

Substutiting these into (4.109) and (4.110) and performing midpoint integration

yields

__ App_p / 2j e_JkOPe-Jko [-p._
faP(P'a'cu)= J 4 Vrkop

cos(c,-_j- 2 )-u_pf2_,(p,o, aj) = koA'P"',/ 2j e_Jko%-jk°[-0. ,
4 yrkop

Ap
¢os(,_j+ --_ - ,_o.)

(4.117)

(4.118)

Thus, from (4.108)

1 [ 2j k°
__..¢'.(p,_)=-,/" e-' '

4 Vrkop

Na]

{)A,e_, _ ¢ _, e-J@", ¢0"<_-°,-÷)-_"i"o]
j=l a'r_

No

+Ja_po_ _ %½e-J_°[-",_°'("-°,-_)-"_ "_"°1
j=Na 1 +1

N., A1
+ kozxlp°,_ Cj+_e-'k°[-oo,°_(°-°,-V)-,o, ._-o]cos(_- _j - --)

j=l 2

N.
• A 2 ],+ kozx_p.__ Cj+½e-Jk-[-o-_¢o'(o-o,-,)-_¢,,,-Olco_(,,___5_)J

j=Na 1 +1

(4.119)

the echowidth becomes

o = jA,p,,, E Cj+ le-jk.[-O'l e°a(°-og-'_')-Y¢l sina]
j=l

N.

j=N*I +1

Na 1

+ ko_,Oo,_ %½e-;_°[-"__o.(o-o,-_)-_ .i°o1
j=l

cos(_j+y- ..,)



79

N.

j=No I +1

4.5 Results

Y/x_ 2cos(oj + -0°2)

(4.120)

The scattering patterns of several circular and ogival cylinders for both E- and

H- polarization are shown in the figures to follow. Figs. 4.4-4.6 contain circular ge-

ometries both coated and uncoated, while Figs. 4.7-4.9 contain coated and uncoated

ogival structures. The echowidth is computed for each structure and compared to

the results of the series solution for the circular bodies and moment method [13, 14]

for the ogival structures. As seen in all cases, the generated patterns via the FE-BI

formulation are in excellent agreement with the corresponding data based on the Mie

Series and Moment Method Solutions.
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Figure 4.4: Ez and Hz bistatic echowidth of a perfectly conducting circular cylinder

of radius 0.SA
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Figure 4.5: Ez and Hz bistatic echowidth of a perfectly conducting circular cylinder

with a conductor radius of .5A and a coating thickness of .05A containing

material properties _r = 5 -jS,/L_ = 1.5 -j0.5
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Figure 4.7: Ez and H. backscatter echowidth of a 0.5 x 1A perfectly conducting ogive
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4.6 Summary

The scattering from targets surrounded by ogival and circular boundaries has

been presented. The finite element method produces the usual sparse sub-matrix,

while a discrete version of the boundary integral results in a dense sub-matrix. The

mathematical boundary enclosing the scattering structure may be judiciously cho-

sen such that the boundary integrals are convolutional. As a result, they become

amenable to evaluation via the FFT and leads to an O(N) storage requirement.

Among the circular and ogival boundaries considered, the circular boundary satisfies

the above requirements. The ogival boundary results in convolutions only when the

source and observation points are along the same arc, while the non-convolutional

cross-terms must be stored efficiently to guarantee the required storage requirement.

When considering circular and ogival structures, the associated circular and ogi-

val boundaries are usually conformal to the structure, thus providing an additional

reduction in the number of unknowns.

To validate the method and associated computer code, scattering patterns of

several circular and ogival structures were given and compared with data generated

by proven methods.



CHAPTER V

The Elimination of Boundary Integral Interior

Resonances in Two-dimensional Finite Element -

Boundary Integral Formulations

5.1 Introduction

The interior resonance corruption of boundary integral solutions for scattering

computations is well known, and its treatment has been a subject of research for the

last two decades. Methods based on the "complexification" of the wavenumber [15],

the overspecification of the boundary conditions [16], [17], and the linear combina-

tions of integral equations [18], [19] have been proposed, while others have focused

on the solution technique rather than the system formulation [20]. Not surprisingly,

when the boundary integral equation is used to terminate the finite element mesh,

the interior resonance corruption persists and this has restricted the application of an

otherwise promising method for large scale computations of highly inhomogeneous

structures.

To demonstrate the seriousness of the problem, Fig. 5.1a shows the backscatter

echo width of a circular conducting cylinder of radius ac for TM plane wave incidence.

The mesh is terminated on a circle of radius ao = 1.01at on which the boundary

integral equation is applied. The results, displayed as a function of l,'ao, were obtained
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via the FE-BI described in chapter IV. The unknown in this implementation is

the total field, and as seen the solution is severely corrupted, a difficulty which

persists for other scatterers as well. (For reference, the locations of the interior

resonant frequencies are displayed by the vertical lines at the bottom of the figure.)

The corruption is further evidenced in the near zone scattered field plotted in Fig.

5.1b, obtained by subtracting the incident from the total field generated via the

aforementioned FE-BI method at kao - 23.586. To render the FE-BI method

robust at all frequencies, it is thus essential to remove the problem associated with the

interior resonances. However, employing traditional methods such as those described

in [2] - [6] requires either significant modifications to the original FE-BI formulation

or substantial computing time, thus affecting the efficiency and performance of the

method.

Further, for the "complexification" scheme proposed in [15] to be effective, we

verified that three different computations are required for each incident angle when

combined with the total field FE-BI system in (4.60). That is, the total field FE-BI

solution must be repeated three times with different complex propagation constants,

all slightly perturbed from the free space wavenumber. Fig. 5.2, the counterpart to

Fig. 5.1, demonstrates how the amplitude of the field quantity varies for c_ = 1 -

jO.O01 and a = I-j0.005. In the following section we present a simple modification to

the FE-BI formulation which renders it relatively immune to the resonance problem

without the need to repeat the solution.

5.2 Method

The proposed approach for eliminating the failure of the FE-BI method at in-

terior resonant frequencies is based on the observation that the specification of the
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tangential electric or magneticfield excitation aloneat the integration boundary is

not sufficientto yield a uniquesolution [19]. Therefore,wemovethe excitation away

from the integration boundary by employingthe scatteredfield asthe working vari-

able. This is accomplishedby first writing the total fields everywherein spaceasa

superpositionof the incident field ¢i and the scatteredfield ¢s as

¢ = ¢_+ CS (5.1)

The boundary integral in (4.5) may be expressed entirely in terms of the scattered

field as

which differs in form from (4.5) by the incident field term. The excitation is instead

associated with the finite element portion of the system on conduction surfaces and

material interfaces. This becomes clear after substituting (5.1) into (4.10) to obtain

[/.,J -_, + + k_ov¢'w: dn" + _. w:e, dr"
s _ ay ay J

[[
= -g -_, + + k_v¢'w: da e (5.3)

where the quantity g, has been left in terms of the total field to ensure tangential

field continuity between adjacent elements which may contain different materials.

The expressions for TM (¢° = E_) and TE (¢" = Hi) differ by the application of

the boundary condition on perfectly conducting surfaces. For TE incidence, _b = 0

and the contour integral contribution on this portion of the path F e disappears. For

TM incidence, the condition ¢" = _¢i is applied after assembly, and this results in the

elimination of the associated contour integral. Thus, in following the discretization

procedure outlined in section 4.2.1, we obtain the system

3 3 3

a_,_(¢_'};- E S, bTj(k){¢s};= -u:
j=l k=lj=l

(5.4)
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where

= [[ {__[o+o_:u_
S-_ [ Ox Oz

Note that ai_j and bi_ are unchanged.

°+°--N'°I _+N:_ (_.5)
+ Oy OyJ + k_° , df_"

Assembling the final system and applying the appropriate boundary conditions,

we have

for TE and

A_ A_z 0 -Bo_

A1_ At1 Aid 0

0 Adl Add 0

M_,. 0 0 -L,_

1 "1
-Ua I

-UI

--Ud

0 j

(5.6)

A=A°,0 -,=
sl

A,. A,I Aid 0 d)1 [ -UI

I (5.7)
¢i0 0 I 0 Cd[ -- d

/ m

, $ JM_ 0 0 -L_ _b_ 0

for the TM case. Clearly, now, the excitation is present entirely in the FE region of

the system, as opposed to the BI portion as was the case in the total field formulation

of chapter IV.

The system is then solved with the introduction of a small loss in the propagation

constant appearing in the Green's function in (5.2) accomplished by replacing k with

ak, where c_ = 1 - jS. This substantially improved the convergence of the employed

biconjugate gradient solver for the cases considered. However, in contrast to the

"complexification" scheme employed with the total field formulation, the scattered

field solution in (5.6) and (5.7) is relatively insensitive to 5 (provided, of course, _ is

very small).
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To demonstrate the effectiveness, efficiency and accuracy of the proposed method,

let us reconsider the problem of scattering by a circular cylinder via the scattered field

FE-BI formulation. As seen in Fig. 5.3a, the far field is no longer corrupted by the

fictitious interior resonances and the same holds for the near zone field as displayed in

Fig. 5.3b. The results, shown for a = 1 -j0.001 and a = 1 -j0.005, are also seen not

to deviate from the series solution, although the convergence rate of the solver varied

significantly as a function of a. For example, the unperturbed (no complexification,

i.e., o = 1) scattered field formulation converged in approximately 0.15N iterations

over the frequency band considered in Fig. 5.3a, where N denotes the unknown

count. For a = 1 -j0.001, the solution converged in 0.13N iterations whereas for

a = 1 - j0.005, convergence was achieved in approximately 0.08N iterations. Note

that this fast convergence rate is due in part to the fact that the discrete boundary

integral occupies a substantial portion of the total FE-BI system. For complex

structures, this may not be the case and the affect is expected to be less pronounced.

Also, we consider the TM illumination of a 5.256A x 5.256A metallic square cylin-

der. For the implementation of the scattered field FE-BI formulation, the boundary

integral was enforced on a circle of radius ao = 3.754A so that kao is the fifth zero

of the Bessel function of order 6. With the incident field direction normal to one of

rectangle's faces, Fig. 5.4 depicts the corresponding bistatic scattered field obtained

via the total and scattered field FE-BI formulation with _ = 1 -j0.005. Clearly,

the pattern based on the scattered field FE-BI formulation agrees everywhere with

the moment method data. In contrast, the results based on the total field FE-BI

formulation are substantially in error.
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FigureS.l: Comparison of the far zone and near zone fields for TM plane wave

incidence on a circular metallic cylinder as computed by the total field

FE-BI method and the eigenfunction series. (a) backscatter echo width

vs. kao -- the lines over the horizontal axis correspond to the eigenvalues

of a circular conducting waveguide. (b) magnitude of the TM scattered

field on the enclosure at the resonant frequency kao = 23.586



93

20.0 I 1 I I

o
e-

15.0

10.0

5.0

0.0
18.0

..... - ....... ..o-°-°°-°'°''"

ct=l-jO.O01

.........o_=I-j0.005

......SeriesSolution
• . ! . . I .

21.0 24.0

(a)

• I . , I L .

27.0 30.0 33.0

ka0

1.5

-d
t_ 1.0

0

_ 0.5

..... I ..... I ..... I ..... I ..... I .....

0c=l-j0.001

......... _t=l-j0.005

...... Series Solution
..... I ..... I ..... I ..... I . i . . . I .....

60.0 120.0 180.0 240.0 300.0 360.0

Angle [Deg]

(b)

Figure 5.2: Far and near zone fields for TM plane wave incidence on a circular metal-

lic cylinder as computed by the total field FE-BI method with k replaced

by ka in the BI equation. (a) backscatter echo width vs. kao. (b) magni-

tude of the TM scattered field on the enclosure at the resonant frequency

kao = 23.586
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Figure 5.3: Far and near zone fields for TM plane wave incidence on a circular metal-

lic cylinder as computed by the scattered field FE-BI method with k

replaced by ka in the BI equation. (a) backscatter echo width vs. kao.

(b) magnitude of the TM scattered field on the enclosure at the resonant

frequency kao = 23.586
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5.4 Summary

A method was presented for the elimination of the interior resonance corruption of

the boundary integral in the FE-BI formulation. By expressing the system in terms

of the scattered field and employing a complex wavenumber in the boundary integral,

the effect of resonances were removed. This implementation of the method was shown

to be superior to that associated with the total field formulation presented in chapter

IV in that only one sample per frequency was needed. Though the development

was implemented for the two-dimensional FE-BI formulation, it is applicable to the

three-dimensional one as well, as seen in chapter VI.



CHAPTER VI

A Finite Element- Boundary Integral

Formulation for Axially Symmetric Structures

6.1 Introduction

A finite element - boundary integral approach is applied to the case of axially

symmetric structures. The method follows the same procedure outlined in section

2.2. In this implementation, the coupled potential equations [21] are discretized via

the usual finite element method, and the resulting system is augmented by a discrete

form of the Stratton-Chu equations [22]. The storage reduction associated with the

boundary integral is achieved by exploiting matrix symmetries and the final system

is computed by employing a conjugate gradient solver.

In this chapter, the formulation for the FE-BI is described for axially symmetric

scatterers. The results presented demonstrates the accuracy of the method along

with showing its limitations.

6.2 Finite Element Formulation

In this section, we derive the analytical coupled azimuth potential (CAP) equa-

tions [23] which are then discretized via the finite element method. A consequence

of the formulation is a line singularity, which tends to corrupt the computed fields

97
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Z

_y

X

Figure6.1: The general axially symmetric surface with source (primed) and obser-

vation (unprimed) points and the corresponding unit vectors

for scattering domains incorporating lossless media. A regularization approach is

suggested for its removal.

6.2.1 Analytic CAP Formulation

Maxwell's equations in a source free region are given by [12]

V x E(_) = -jw_g

V x H(_) = jweE

v.-g(_) = o

v.-9(_) = o

(6.1)

(6.2)

(6.3)

(6.4)
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For axially symmetric media suchas that indicated in Fig. 6.1, the fields may be

representedby a Fourier seriesin the cylindrical coordinate¢ as

E(_)= y_ L_(p,z)e jm¢ (6.5)

oo

r/H(F)= _ -hm(p, zle im¢ (6.6)

where

lfo_"

1 _'_

-'E(v)e-Jmcd¢ (6.7)

r;H(V)e-J"_d¢ (6.8)

Up substituting (6.5) and (6.6)into (6.1) and (6.2), we obtain

R [-_zh,.,,p o-_h_z] = je,(Re_¢)

1 [j.,,h... _(,hmo)]= -_,.,...

with

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

R= kop, Z= koz (6.15)

to be referred to as normalized coordinates.

gives

where

Substituting hmz of (6.14) into (6.9)

o (Rhine)] (6.16)

_ = [R_.__m_]-' (6.17)
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and

_¢2= _r_r (6.18)

Analogously, substituting emp of (6.9) into (6.14) yields

hmz = jf, n [m_z(Rhm_) + Rera(Rem,_)] (6.19)

while a similar procedure for combining (6.10) and (6.13) yields the pair

e,,,. = jf_ [ma(Re,-,-,_,) - R#. a2-_(Rhm_) ] (6.20)

hmp = jf_ [mo-_(Rh,,,¢)- Re_o2-2(Re_,) ] (6.21)

Equations (6.16) through (6.21) may be expressed in compact form as

x Ln(R,Z) = jfm [me × V,O_- #,.RV,Oh] (6.22)

$ ×-_,,,(R,Z)= jy_ [m_× v,¢h + ¢,RV,0_] (6.23)

$.'_,,,(R,Z) = O_/R (6.24)

_k" "hm(R,Z) -- Oh/R (6.25)

where

V, = _a + ka (6.26)

and 0_ and Oh are herein referred to as the azimuthal potentials. Rewriting (6.11)

and (6.12) as

(6.27)

(6.28)

and then substituting (6.22) and (6.23) into them produces the CAP equations

e,O, - 0v,. [/..(_Rv,o_ +,_ × v,_,_)]+ R

v,. [/..(..Rv,o_ -,_ x v,o.)] + ..o___z,= o.
R

(6.29)

(6.30)
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This system may be written in operator form as

L_ = 0 (6.31)

where

and

Z

v,. [fm_.RV,] + R

-mVt. [f,.,,$ x V,]

(6.32)

¢ = [_be Oh] :r (6.33)

The three dimensional axially symmetric problem has, thus, been cast into a

two-dimensional one and its discrete representation is formulated in the following

section.

6.2.2 Discretization of the CAP Equations

To discretize (6.31), we first enclose the generating contours of BOR in a fictitious

boundary F (= Fa+F¢+Fz) as shown in Fig. 6.2. The region interior to F is divided

into Ne triangular elements and within each element the corresponding weighted

residual expression is

ff g:(R,Z) L¢ dSe=O (6.34)

S"

where N[ is the usual shape function [5], so chosen to satisfy the Dirichlet boundary

condition of @, and Ch on Fz. Substituting the first of (6.31) into (6.34) gives

S_

and upon employing the identity

N_Vt . A" = Yr. (N._A') - -J".VtN[ (6.36)
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R

Figure 6.2: Cross section of a generating surface enclosed by the fictitious boundary

F

gives the expression

• N e (e,.RVtq.'eg[,_,{ ,J. +
S _

-f,,, (_,RV,¢_ + ¢.¢,N_ . V,N:],tS" = 0.,;_×v,_,h)+ n (6.37)

Furthermore, by invoking the divergence theorem, (6.37) may be written

fJ -fro (e,RV,¢. +me× VtCh)]- _7,N: + R
S .

+L_ [,,:,..(_.,,,,.,_.+.._×:,.,,_)],,.-o (6.38)

where fi is the outward normal along the boundary C _ of the eth element. Finally,

on using (6.22) these may be simplified, yielding

JJ [-J_(_'Rv'_'+"_×v'_'O]'v'u:+ R
S _

- .,c_, N_(jh,,,,)dl" = 0 (6.39)
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where

with

hm, = t. hm (6.40)

i = h x (_ (6.41)

Equation (6.39) and its dual constitute a weak form of (6.31) over the eth element.

The development thus far has employed the total potential as the working vari-

able, but may also be expressed in terms of the scattered potential as well. To this

end, any function ¢ satisfying Maxwell's equations may be written as a superposition

of the incident and scattered potentials, i.e.,

Ch = Ok+ ¢_

(6.42)

(6.43)

J/{ (,,,,,z,¢:

where the superscript s denotes the scattered potential and i denotes the incident

potential (i.e., that potential present in the absence of the scatter). Substituting

these into (6.39), the corresponding expression in terms of the scattered potential is

$ re /+m$xVtCh .VtN_+ R

t"

S _

where the contour integral has been left in terms of the total field until the final

system assembly (of equations) is performed.

To form a discrete system of equations, the potentials in the e element are ex-

pressed as

3

¢:(R,Z) = y_ N;(R,Z) {¢_}; (6.45)
j=l
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3

¢_(n, z) = _ g:(n,Z) _h,js'"'"
j----1

and upon substituting these into (6.44) gives

-f,,:,nv,g: . V,N; + _,-----fi--{,1,:};
j=l

-mJm_x V,N;.V,N:(_'_};}_S_]

- re, N_(jhmt)dle = {V}_

(6.46)

(6.47)

where {U}_ is given below. Assuming e, and #, are constant within the element,

(6.47) may be written as

3

[e: [a],%.{¢:}; -[bl_j {¢_,};] =/c N_ (jhmt)dl _ + {U}_ (6.48)
j=l e

where

[,1,%= -y. R V,N:. V,N; + ,tS•
S _

[bli% = gmf,-,,¢ × VtN;. V,N_ dS _

S •

- { ':._,'.= /J [-:=(. R,;,,_.+r.;

(6.49)

xv,_)] v,u:+

(6.50)

'_}_,¢_g_ es_(6.51)
R

These constitute the equations for the eth element, and the final system is assembled

by summing over all elements in the discrete model.

Before pursuing the step of system assembly, explicit expressions for (6.49) and

(6.50) may be developed by first writing them as

(_,;+7_:), ff N'_N _[_],% .,x+ JJ _dS _ (6.52)(2a._
S_

and

(/3_-_;- fl;3,[)io (6.53)[hi,%= -m (2ao)_
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where the linear shape function and its coefficients are given by

+ + 77R
N_(R,Z) =

2f_ e

C e e _ •

a i = Z,+IR,+ _ -- Zi+2Ri+ 1

_i e ee = Ri+l _ Ri+2

i+2 - i+1

(6.54)

(6.55)

(6.56)

(6.57)

and

R
11 = //_2R2 _ rn2dS"

S •

= ff 1
Io S _ x_ R_ _ rn _ dS _

Evaluating (6.58) and (6.59) over a triangular element yields

_"_e 3

I, - + z,"(-m)]
/_ i=1

/F 3
Io = -- Y_[Z:(m) - Z_(-m)l

TI_ i=l

with

(6.58)

(6.59)

(6.60)

(6.61)

Z_(m) = (nR_ + rn)log(Kn_ + rn)
/3hx/3h2 (6.62)

The second integral in [a]i_ may be computed numerically via gaussian integration.

The sums appearing in I0 and I1, however, experience problems when an element

edge is parallel or nearly parallel to the axis of revolution (i.e., element d in Fig.

6.3). In this case, two of the three terms have denominators which are nearly zero,

resulting in cancellation errors upon their summation. To avoid such errors, the

sum of two consecutive terms, i.e., 2"i_ + 2-_+1, is carried out by first expanding the

numerator of either term 2" and then performing the addition analytically. In this

way the offending term is canceled and the final result is well behaved.
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Figure 6.3: Typical triangular elements in the vicinity of the line singularity at Ro =
m for real x
/g

Proceeding then, we note that the Taylor series expansion of x In x about Xo is

(6.63)

where

oo (_1),+, Y" (6.64)
s(y) = _ .(n + 1)

and the sum converges when Ix - z0[ < "R, where R is the radius of a circle centered

at x0 in the complex x-plane for which x In x is analytic [24]. The series may be

truncated in N terms when the error, given by the ratio of the Nth term to the first

term in the series is less than some tolerance e, or more explicitly when

2yN-I [N(N + 1) < e

For e = 10 -r, a fit to the nonlinear function in (6.65) for [y[ E [0.1, 0.7] is

(6.65)

N(y) = Round(elUl(9.97633el_l - 5.94387)) (6.66)

Once N is known, the series is evaluated efficiently using Horner's rule.

Employing the expansion (6.63) to the partial sum Zi(m) + _'i+l(_) yields

1 [(t+R/÷2+m)lntgR/+l+rn) , e/ t_/3:÷+ _]

.-'at'-" , ,,_ - - • - o,_, form 1
Z_(m) + Z_+,(m) = --,+, , _., ._.,+,+m.j

, [(_n,+2+,,,)]n(_n,+=).,. ,-,,-_:,_,1 (6.67)
_-_ [ _eh, t * t Dt_Ri+r n)j form 2
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where form 1 was obtained by expanding the numerator of 2";(rn) about R,+1, while

form 2 results by expanding the numerator of 2"_+l(m) about R,. For elements well

away from the line singularity, either form is valid. However, as KR + rn ---. 0, the

radius of convergence R is reduced to zero due the branch point of (_R+ rn) ln(nR+

m). The method for choosing the appropriate form may be done numerically by

computing the value argument of S in (6.67) for each form. The one which gives

the smallest value y • [0.1,0.7] in S(y) is chosen for computation, since the series

will converge the fastest for it. If y falls in the range 0.7 < y < 1, the series (6.64)

will still converge, but very slowly as y approaches 1. If lYl > 1, the series will not

converge and the associated form (1 or 2, or both) will be invalid. Note that neither

of them is valid if both points lie along the line singularity (in which an infinite result

is obtained) or if one lies above it and the other below (as in element b of Fig. 6.3).

In the latter case, (6.60) and (6.61) must be evaluated directly, but a new mesh may

be necessary for the former. An approach for bypassing this difficulty is discussed in

the following section.

Summing over all elements to obtain a solution for the entire computational

domain fl, our system becomes

Ne 3

e=l j=l e=l a e=l z

Ne Ne

+ _-" fr N._ (jhm,)dl + _-'_{U}_ (6.68)
e=l c e=l

Note that since N_ and hint are individually continuous between adjacent elements

(and the same is true for their product), the contour integrals cancel everywhere

except on the domain boundary F. Accounting for N[ = 0 along the z-axis, this
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system combined with its dual may be written in block matrix form as

A_,_ 0 A_I -B,,a 0 -Baz

0 A_c Accz 0 -Bc_ -B_I

A}_ A}c A}z -BI, -BIc -BII

B=a 0 Baz A_ 0 A"_z

0 Bc_ B_j 0 Ac"_ A_

Bt= BI_ Btt A_,, A_ A_l

+ [ N_E,=, fr. j N._ hm, dl 0 0

+ [ o ET_-',ko JNt h,,. dl 0

{¢,1,_eJ

{¢:}_

{¢_}o

{¢_}i

{U}<,

{u}c

{v},

{v}o

(y}_
,T

N. dlO0- E_=I fr. JN[ era,

]r
N. ._ dlO0 - E_=l fro3N_ e.,t j

(6.69)

where

Ne

[A<Iu = y_ e: [a]_/ (6.70)
e=l

1%

[AU]kt = _ #: [a]_ t (6.71)
e--_.l

N,

[Blkt = _] [b]_t (6.72)
e=l

Ne

Uk = _] {U}_ (6.73)
e=l

where the ijth member of the eth local element matrix is related to the kith member

of the global matrix by a node-element connectivity transformation function p as

k = p(e,i) (6.74)

l= p(e,j) (6.75)

In (6.69) the subscript I refers to group of nodes in region the 12 excluding F, and the

subscripts on A `'u, B, U and V refer to the various regions of Q and its boundary.
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For example,A1c refers to the matrix resulting from the interactions between nodes

in region fl and on Fc, whereas Ace refers to the matrix resulting from the interaction

of the nodes on Pc. Each matrix is sparse, having nonzero elements when the nodes

share a common element. Note also that V is the dual of U, which was defined in

(6.51).

Two options exist at this point for evaluating the contour integrals. They may

either remain on the excitation side and the tangential modal fields expressed in

terms of a condition on Fa, or the tangential fields may be expressed as unknown

scattered potentials and moved into the matrix. The second is required for the FE-BI

formulation and is given by

A_ 0 A'a1 -Ba= 0 -Bal 0 -Caa

0 I 0 0 0 0 Caa 0

A_a A_c A_t -Bta -BI_ -BH 0 0

Baa 0 Bal A_a 0 A_I 0 0

0 B_, B¢_ 0 A_ Ac_ 0 0

Bla BIc Bll A_a A_c A*]l 0 0

+ [ Z,N-_",ft. N_(jh'_,)dt

Cs a

{_:}c

{_:,}a

{U}a

-{_}c

{u}i

{V}a

{v)c

Iv},

0 0 -Z7_:,fr.U_(j¢.,,)dt 0 0 _]r

(6.76)

where the boundary conditions _ = 0 and e=, = 0 on F_ were also enforced. Addi-

tionally,

N_

[C]k, = _ Jr N_N_ dl _ (6.77)
e=l a R
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and

j----1

3

¢],t = jRh_t = Y]_ N_ {¢_t};
j=l

(6.78)

(6.79)

This form is now suited to augmentation by either a discrete form of a boundary

integral equation explored in section 6.3.

6.2.3 An Improvement to the Finite Element Formulation

The integrand of each of [al_j and [b]Tj in (6.49) and (6.50), respectively, becomes

singular when R = 4-m for real _. Since we are only concerned about solutions

for which m > 0 (those for m < 0 are found via symmetry considerations), only the

positive sign is considered, or Ro = _. The location of the singularity is independent

of Z and is hereafter termed "line singularity." The line singularity intersects any

element e containing the radius R0 (as seen in Fig. 6.3 for a homogeneous medium),

or is near an element if Min(lRo- R7 I) is small (not defined now) for the normalized

radii of element e, R_ for i E [1, 3]. The origin of this singularity has been discussed

previously in [23] for the CAP equations.

For elements containing R0, [a]_j and [bl_ gain an additional residue contribution,

automatically included by the use of the logarithm of (6.62) in the sums (6.60) and

(6.61). However, for elements oriented nearly parallel to the line singularity, as in

element b in Fig. 6.3, the contribution to (6.60) and (6.61), and consequently [a]_.

and [bliP, become large. In the case of element a in Fig. 6.3, they become infinite.

Large matrix elements are associated with the slow convergence of the conjugate

gradient solver and inaccuracies in the resulting solution. Presented here is a way to

avoid this problem.
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To understandthe nature of the problem,we recall (6.23)

(6.80)

the right hand side of which appearsin (6.44) and ultimately in [a],_and [b]i_after

discretization. Since 0_x h,_ must remain bounded everywhere in space (barring

edges of perfect conductors), the right hand side of (6.80) must also. Clearly then,

the bracketed terms involving _be and Ch must combine to cancel with the singularity

in fm = 1 The finite element discretization, however, separates these(,,n+m)(,,n-m) '

two terms and each will individually become large when an element edge is nearly

coincident with the line singularity.

To regularize [a]_j and [bliP, we first define the integral

Se S _

which appears in a portion of (6.44). Each of the integrals in (6.81) must be regu-

larized, and in doing this we must subtract and add a term from each of the form

h(Z,m)
xR- m

(6.82)

where h(Z, Ro) is the factor of the integrand which is well behaved at R = Ro.

Applying this technique to (6.81) gives

f/ 1I= xR-
S _

' e,(Z, N)NV,¢.'(Z, no). Ro)] as _VtN_ VtN_(Z,B

m tcR+m xRo+m J

ff m [$xV, ZVtN, 5xVt¢_,(Z, Ro)VtN:(Z, Ro)]dS, _ •

S, _ R- m -x-R + m x Ro + m

1 [f.r(Z, Ro)RoVt¢_(Z, Ro)'Ji-KRo_l_l,12m4)x Vt¢_(Z, Ro)]. _.lti_r_(g, Ro)dSe

(6.83)

nR- rn

where h(Z, Ro) for each integral is clear by the argument (Z, Ro). Where not explic-

itly shown, all functions exhibit a (Z, R) dependency.
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The key to implementing this method is the elimination of the third integral in

(6.83). Note that the numerator in the integral of this terms is simply the bracketed

factor in (6.80)evaluatedat R = Ro. As mentioned before, ¢ × hm(Ro, Z) must be

finite, the bracketed term is zero at R = Ro. Thus,

mS × V,Oh(Z,no)=-_(Z, no)noV,¢,(z, no) (6.84)

The third integral of (6.83) vanishes when the expression is substituted into its

integrand.

After following the usual discretization of the azimuthal potentials, (6.83) may

be written in discrete form as

ff r',RV,.N;
j=l S" xR - m l. xR + m

_,(z, no)noV,U;( Z, no)
xRo+ m

+ __,{ n}.i • V,N;
j=l S" tcR- ra xR + m

_Sx V,N;(Z, no)
_Ro+ m

. V,N_(Z, no)]dS_

•V,N_(Z, no)]dS •

(6.85)

For linear shape functions, the gradients are constant (as well as e,) and are factored

out to yield

3 gI = _{¢_};e, 1 VN_. VtN_dS"
.i=a S" 2x(xR + m)

3 ff =
+ _{¢_}_ 2m(xR m) _ x VtN;.V,N[dS _

j=l S" +

(6.86)

which are clearly regular when R = m._ Thus, the matrix elements in (6.49) and
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(6.50), may now be written

=//[ N'_N_I1 VN_.VtN_+
[alij S_ 2_¢(tcR + rn) _]dS _ (6.87)

c = // 1 ¢ x ViNe. VtN_dS _ (6.88)
[b],j so 2( R + m)

These were implemented, but did not work very well. Note that since the potentials

¢_(Z, R0) and ¢_,(Z, R0) were expanded in terms of linear functions, their respective

gradients are are constant everywhere in the element independent of R and conse-

quently independent of Ro. Since the derivatives V¢_ and V_bh are constant over the

element, this approach to regularization is of low order. To improve the accuracy, the

functional dependency of this on R must be increased and for the existing discretiza-

tion scheme, this may be done by refining the mesh in the vicinity of the singularity.

This, however, is not a realistic option for frequency sweeps for scatterers containing

lossless materials. Using higher order shape functions or employing the modal field

as the working variable (i.e., V¢_ = V(Rem¢) = RVe,n¢ + em(VR) would alleviate

this problem. It is interesting to note that given (e = Rem_, a linear variation in

Z of era( corresponds to the same in ¢e. However, a linear variation of era( in R

corresponds to a quadratic variation of the same in ¢_. But since ¢_ is expressed in

terms of linear shape functions here, the radial behavior is lost.

In summary, then, we have developed a method by which to alleviate the problem

associated the line singularity at R0 = m for real ,¢. This not only eliminates the

need for a residue contribution to [a]_j and [blip, but also prevents them from ever

becoming infinite. In addition, a direct consequence is that these element matrices

are now purely real for scatterers containing lossless materials, which is not the case

for the traditional formulation presented in section 6.2.2.
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6.3 Boundary Integral Formulation

In the previous section, a weak form of the wave equation was developed for

scattering bodies in fl and bounded by F = Fa ÷ Fc + F_. The boundary conditions

on Fc and F_ have already been included in the system (6.76). The resulting discrete

system remains incomplete, however, since the boundary conditions (which provide

a relationship between the tangential E and H fields) on the exterior boundary Fa

remain unspecified. The Stratton-Chu integral equation (S-C) provides the necessary

relationship for source and integration points along F_, when the integral equation

is expressed in terms of fields tangent to the surface of revolution. By employing a

Fourier series expansion of the S-C and thereafter discretizing it on F_, the resulting

system provides the needed equations for solving (6.76).

As a preliminary step , the electric and magnetic fields in the unbounded region

are represented by

(6.89)

(6.90)

where E'_(v) and _(v) are the incident fields and the scattered fields are given by

the Stratton-Chu equations [22]

S'

+[_'x_'(_)]×V'g(_,_)}es'
1

x _'(¢)]g(_,_)-_[_, v ×_'(el]V'g(_,¢)

+[fi'x r/oH"(V)] x V'g(_,F')}dS' (6.92)

(6.91)



115

where F' and F are the source and observation points, respectively and

e-JJ'° I_-V'l
g(_,V) = (6.93)

4_l_-el

is the free space Green's function. In this form, all field quantities are tangent to

S'. Since in the development of the discrete boundary integral system the source

and field points reside on the surface S', it is convenient to remove the singularity

at _ = W by expressing the integrals in (6.91) and (6.92) in terms of their respective

principal values as

S'

1

+ [_'x_'(_')]x v'w,_')}ds' (6.94)

"_o_'(_)= _ko[a'×r'(_)] ,(_,_)- _ [a'.v xr'(e)] v'w,_)

+ [_'x ,0_'(_)]x v'W,_)}dS'(695)

Looking back to (6.76), it is clear that two additional equations relating the

unknown potentials ¢_, ¢_, ¢_t and ¢_,t are necessary to form a complete system.

This may be achieved, for example, by using the [ component of the modal form of

(6.94) and the ¢ component of the modal form of (6.95). In fact, many combinations

are possible but for simplicity and symmetry, the ¢ component of (6.94) and (6.95)

is considered below.

6.3.1 Derivation of the Modal Boundary Integral Equation

In a fashion analogous to the finite element formulation, the development is pro-

vided explicitly for (6.94) and duality is employed to obtain the corresponding ex-

pression for (6.95). First, consider the general surface of revolution indicated in Fig.

6.1 whose tangential unit vectors are denoted by ¢ and t. The unit vector [ subtends
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an angle v with the z-axis, and P subtends an angle v' with the z-axis. With reference

to Fig. 6.1, the various unit vectors are given by

h = &cos v cos ¢ + # cos v sin ¢ - ,_ sin v

6 = -& sin ¢ + # cos ¢

i = 5:sin v cos ¢ + # sin v sin ¢ + _.cos v

(6.96)

(6.97)

(6.98)

= i sin v cos $ + h cos v cos 5 - 6 sin

= i sin v sin ¢ + h cos v sin ¢ + 6 cos ¢

,_ = tcosv - hsinv

(6.99)

(6.100)

(6.101)

Expressing the primed unit vectors in terms of the ones results in

i = i' [sin v' sin v cos(¢ - 5') + cos v cos v']

+ h' [cos v' sin v cos(¢ - ¢') - cos v sin v'] + 6' [sin v sin(5 - ¢')]

,_ = i' [sinv' cosv cos(¢ - ¢') - sin v cosv']

+ _' [cosv' cosv cos(¢ - 5') + sin v sinv']+ $' [cosv sin(¢ - 5')]

6 = -P' sin(5 - 5') + ¢' cos(5 - 5')

(6.102)

(6.103)

(6.104)

which clearly reveal the dependency of the unit vectors on the azimuthal variation

5 - 5'. Further, the following identities can be shown to hold:

¢" V'g =

6. (,7 x .oY') =

_'. (v' x .o_') =

x =
+

-6" Vg

-.oH_ sin v' sin(5 - 5') - r/oH: cos(5 - 5')

x a , o _';(,0H, )]7 [-_i;(P .oH;) + ,9 °

[_'E_ sin(5- 5') + h'E_, cos(¢ - 5')

^' s sin(¢ ¢')] V'g¢ E; cos v' - •

(6.105)

(6.106)

(6.107)

(6.108)
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Using these in (6.94) gives

½E;(F) = Jr. J:_{ jk°[rl°H:sinv'sin(¢- ¢') + r/0H: cos(¢- ¢')]g(_,_)

0 , • 0 • [r:'E_'sin(¢ ¢')1 [-sP(P r/oY¢) + _(rtogt )](_" Vg(_,U) +
j ko p'

+ fi'E; cos(¢ - ¢') + ¢'E; cosy' sin(¢- ¢')]-V'g}p'd¢'dt'

%

(6.109)

and by carrying out the derivatives of the Green's functions, we find

o , , _T(_oY t )] sin(¢ - ¢')Ro dRo1 [-_7;(pr/oHo) + 0 • 1 dg
jko

+ (-E:(z - z')sin(¢- ¢') + E_{cos(¢- ¢')[(z - z') sin

- 2p cos v'sin2( ) Ro dRo p'd¢'dt'

v'sin(¢ - ¢') + r/oH: cos(¢ - ¢')]g(_, V)

v' - (p - p') cos v']

(6.110)

in which

P_= _/p_+ p'_- 2pp'cos(¢- ¢9 + (z - z,)_ (6.111)

The integrand of (6.110) is expressed explicitly in terms of ¢ and ¢' and is now

suitable for harmonic decomposition.

To generate the corresponding modal integral equations in terms of the Fourier

coefficients, the fields and Green's function may be expanded as

oo

E'(F)= y_ -g_(p,z)e j"¢ (6.112)

oo

rlo-H_(F) = _ -K_(p,z)e jm¢ (6.113)
oo

oo

g(k)(_,V) = _ g(k)(p,p',z,z')eJ"(¢-¢') (6.114)

where

_(p,z) = 2---_ (P'u'z)e-J'_du (6.115)
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_. ,o

Jo _ cos(nu)d_
1 _ e-jk°_

- f cos u---"=- cos(nu)dug(J)(p,/,z,z') = ,_ o 4,_n

g_2)(p,p',z,z') = --J f sinu-----=-sin(nu)du
lr o 4 _rR

1 frl dg cos(nu)dug(°}' (P' P" Z' Z') = _o o R d_l

1 /'_ 1 dg cos(nu)duCOS 1/'-_" ""-z
9(1)'(P'P"Z'Z') -_o o Rdn

f,_ 1 dgJ sin u-=---= sin(nu)dug(2)'(P'/'_'=')=_-ko_ o Ran

(6.116)

(6.117)

(6.118)

(6.119)

(6.120)

(6.121)

(6.122)

in which

= _/p2 + pa _ 2pp' cos u + (z - z') 2 (6.123)

Substituting these into (6.110) yields

k If'{,[I ' , , (2) _,s ,,,(I)]
e_(p, z)e J"4' = e j'_4, ko hm¢ sin v g. + ",nt_. j

_-_--_) n----_O0 _'_---00 _a 0

1

jko [_o, 'h" \ jmh_t] la..,2}'

,,.2 (2)' • 2 , v,g(1)'.-- e_t(z - z )Xog,. , + e,.,,_ko( p cos

t t

- pcosv g. + (z - z') sin v'g_a)')} eJ(_-")¢'p'd¢'dt ' (6.124)

where t' is the parameter along the contour F_ and increases in the clockwise direction

as shown in Fig. 6.2. Further, upon multiplying each side by e-_p¢ and integrating

over (0, 2r) to extract the ruth harmonic equation gives

I • _ _jh_c, sinv'g_) jo, ,., , (2)'$e=o(p,z) = 2r: - [p nm¢)g,n + (jh_t)[g_) + jmg_ )']
dra k

• ' 0)'
+ e_n¢ko(p'cosv'g_)'- pcosv'g'm + (z- z')smv gm )

- e_t(z- z')kog_)'}kop'dt' (6.125)
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after also combining similar terms and where we have used the identity

[_'_ d {m-'O¢'d¢' = / 27r rn = n
dO t 0 otherwise

Introducing the normalized coordinates

R = kop R' = hop'

Z = koz Z' = koZ'

0 0
-ff_ = kooT,

(6.126)

(6.127)

in (6.125) and replacing the field quantities with the azimuthal potentials yields

2rf {¢], [jsinv,g_) 1_(o • • [g_,+

+ [n'cosv'gU "• - R cos v 9m + (Z - Z')sin v'g_ ) ]

+ ¢:t [j(Z- Z')g_)'l}dr ' (6.128)

This equation and its dual form a pair of integral equations to be imposed at the

mesh termination boundary. Their discretization is considered next.

6.3.2 Discretization of the Modal Boundary Integral Equation

In discretizing the modal boundary integral in (6.128), the contour Fa is first

divided into Na elements each of length A _. Within the eth observation element, the

parametric representation

R = R_I + rsinv"

Z = Z_+rcosv _

(6.129)

(6.130)

is adopted as shown in Fig. 6.4 and is consistent with the required counterclock-

wise path traversal of F,. Likewise, within the source element #, the parametric
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element e

1

A
t

element e'

R ^,
n

1

2 "_^
t

e

N2(x')

Figure 6.4: A typical pair of source (e') and observation (e) elements associated with

the discretization of the boundary integral equation

representation

/i_ = R_' + r' sin v e

Z' = Z( + r' cos v ''

(6.131)

(6.132)

is employed. In terms of the parameter r', potentials within each boundary element

are represented as

/Va 2

el=l 2--1

(6.133)

where u represents any one of _b_, Ib_,_°a or _b_,and

U((r') = 1-_'
Ac' (6.134)

T t

N_'(r') = A---7 (6.135)

are linear parameterized functions of r'. (Note that the linear basis functions are

employed in the finite element discretization.) Employing the method of weighted



121

residualsover the eth observation element and Galerkin's technique to (6.128) gives

/0i y_--_{¢_};' dr+ _-'Y_.]o f ].{¢]'};'N_N([-'-_ jsinv'g_ )]
- 2 R k-ooe,=l j= x oel=l j=l

- tVhJj'""'_'_e_'O''i,TgT_,"j_ee",[jR,g_)'] + {_p],, };' N:eN;_' [g_ ) + jrag_)']

+{g,}j," "N;N;" "'[R' cosv'g_)' - Rcosv gm + (Z - Z')sinv g_ ) ]'' ' '

' o' - o (6. 36)+ {¢.,b _ _'N: N; [j(Z =

In deriving the first term in equation (6.136), it is useful to note that _,_(r) may be

written

¢;(r) = fr° ¢_(r')3(r - r')dr' (6.137)

where 5 is the Dirac delta function. Substituting (6.133) into (6.137) yields

Na 2

¢:(r) = Z: Z:{¢:}_' fr g;'(r'),5(r - r')dr'
el----1 j=l a

N. 2

= Z:{¢ob N; (r)
el=l j=l

(6.138)

Taking the inner product of (6.138) with _ yields

Jr i,,. _ fr g_(r)Nf (r)N_(r) _b;(r)dr = _ y_'{_b;}_' dr (6.139)
R R

a e*=l j=l a

as expected.

The system (6.136) may be written in compact matrix notation

N° 2 ]¢{_0 $ Ct COt $ _t ten $ ffP__, [L*],'2'{¢:};' + [M*]o {¢h}i + [Lt]o {¢a}i + [Mt]ii {¢ht}j = 0(6.140)
e'=l j=l

where we easily see that

_e e ea Ae ]%e_

--3 R _ o

+(Z- Z')sinv'g_}']dr'dr (6.141)
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s" a"_o_ io {N:Nf[jsinv'g_)]-Pc't° "''

L I""' 2= "" ""
']0 = _ /o /o N_.._N,Z'[j(Z- Z')9="]dr'dr (6.143)

[M_]i_:, _- 2WkoJo[iXe_[zx"joN_ N_"_' [9_)+ jrng_)']dr'dr (6.144)

rA 1ee'Each matrix of the form t cJij can be termed "element interaction matrix" (after

the finite element term "element matrix" for the case e = e'), since it represents

the interaction between the source element e_ and the observation element e for

i,j E 1,2 of the local weighting and expansion functions, respectively. The numerical

evaluation of the integrals in (6.141) - (6.144) is performed by breaking the integral

into two integrals with continuous integrands and performing midpoint integration

for each of them. This applies to the integration in r _ as well as for 9". When the

source and observation points coincide, an average value is computed by moving the

Ae
observation point "U" away from the sub-cell center. This has been shown to work

well in [25], and avoids the need for elaborate self-cell evaluation techniques. In all

cases, Gaussian quadrature is employed for the ¢' integration in (6.117) - (6.122).

The local "interaction element matrices' may be assembled to form a global

boundary integral system in a fashion analogous to the finite element method by

first summing (6.140) over all observation elements e as

E e_l 8 _l e_e 1_ I_! ect • ef _t_r 8 et[L/]m {¢.}t + [M¢]kt {q-'a}: + [L,]k: {¢.,}: + [M,]k: {On,}, =0

(6.145)

where the local element subscripts i, j have been replaced by their global counterparts

k, l and are related by the node-element connectivity transformation function q as

k = q(e,i) (6.146)

l=q(e',j) (6.147)
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A(k,l) = 0 k, 1E {1,Na}

Do e = 1 to Na

Doe'= 1 toNa

Do i=1 to 2

Do j=l to 2

k = q(e, i)

l=q(e',j)

A elForm [ ]ij

A(k,l) = A(k,l) + [A],_e

End Do

End Do

End Do

End Do

Table6.1: An algorithm for the boundary integral system assembly for a generic

element interaction matrix [A]i_''

In Table 6.1 is illustrated an algorithm where a generic matrix [A¢]i'_ ' (where A

represents any of L_, M¢, Lt or Mr) is assembled to form a global system. This

algorithm differs from that of the finite element method, in that the loop in e' is

eliminated.

The final FE--BI system is formed by augmenting finite element system with
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(6.145)and its dual giving

A_a 0 A_I -B= 0 -Bat 0 -Caa

0 I 0 0 0 0 Caa 0

A_a A_c A'tl -Bla -Btc -Btt 0 0

Baa 0 Bat A_ 0 A_I 0 0

0 B_¢ B,_ 0 A L A_"_ 0 0

Bto BIc Btt A_a A_c A_x 0 0

L¢, M, 0 0 0 0 Lt Mt

- M, L¢_ 0 0 0 0 -Mr Lt

[ E_-'_I fr. X_(jhit) dl+

{¢:}a

{¢:,}a

{U}a

(uii

{V}a

(V}o

(v},

0

0

] T

0 0 N, ]-_.=1 Jr, N_(je_t)dl 0 0

(6.148)

which can be solved by the conjugate gradient method. Before considering different

solutions of this system, we must develop the harmonic coefficients of various sources

of excitation. This is considered next.

6.4 Sources of Electromagnetic Radiation

The modal forms for a plane wave excitation and an electric dipole source are

developed in this section. The former is employed for scattering problems while

the latter may be used for both scattering and radiation. For both cases being

considered, the resulting expressions for the azimuthal potentials are used in the

expressions developed in section 6.2.
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6.4.1 A Plane Wave Excitation

A plane wave incident at angles (0 i, ¢_) and observed at g = (r, ¢, z) (see Fig. 6.1

) has the form

_¢(Oi,¢i;p,¢,z)-- ¢;e -j_°'v (6.149)

_o(O i, ¢i; p, ¢, z) = t_ie -j_°'v (6.150)

where _i is perpendicular to the plane of incidence and _i is in the plane of incidence.

Expressions (6.149) and (6.150) may be written as explicit functions of ¢ by first

writing the argument of the exponential function as

k0" _ = kor(-_'-÷)

= -/Co [psin 0 i cos(¢ - _i)_31_ ZcosO i] (6.151)

since

= ksin 0cos ¢ + _ sin 0sin ¢ + kcos0

k' = _: sin 0 i cos ¢i + _ sin 0i sin ¢i + _. cos 0 i

(6.152)

(6.153)

Also, making use of the unit vector transformations

_i = -k sin 0 _ + _ cos 0 i

Oi = :_ cos 0i cos ¢i + _ cos 0 i sin ¢i _ _,sin 0 i

:_ = ,bCOS¢ -- q_sin ¢

= _sin¢ + ¢cos¢

(6.154)

(6.155)

(6.156)

(6.157)

(6.158)

(6.149) and (6.150) can be rewritten as

_(0i;p,¢ - ¢',z) = [t_sin(¢- ¢i) + ¢cos(¢- ¢')] e_k°tp'i"e'¢°_[_-_')+_¢°'°'l
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_o(O';p,¢- ¢i,z) = [ticos0' cos(¢ - ¢;) - q_cos0 i sin(¢ - ¢') - _.sin 0']

eJko [p sin O' cos(¢-¢' )+z cos 0']

(6.159)

(6.160)

These may be expanded into a Fourier series in the parameter (¢-¢i) by first writing

(6.149) and (6.150) as

Y_ _m¢(O_;p,z)e "im(¢-¢') (6.161)

_mo( Oi; p, z)e/m('_-¢') (6.162)

Each component of (6.159) and (6.160) may be expressed in terms of one of the

functions

f(oi; p, ¢ _ ¢i) _ eJ*op,in0' ¢o_(_-¢')

fc(O'; p, ¢ - ¢') = cos(¢ -- ¢')f(O'; p, ¢ - ¢')

.f,(oi; p, ¢ _ ¢i) _ sin(¢ - q)i)f(Oi; p, ¢ -- ¢i)

(6.163)

(6.164)

(6.165)

Expanding each of these into a Fourier series in (¢ - ¢') and using the even/odd

properties

s(¢) = s(-¢) _ 8re(u)= s_m(u) for f,f_

s(¢) = -s(-¢) g==_ s,,(u)= -s__(u) for L

of the functions f in (6.163) - (6.165) may be expanded as

OO

f(Oi; p, ¢ - ¢')= fo(Oi, p) + 2 y_. fm(Oi,p)cos[m(¢ - ¢')]
m----I

oo

fc(Oi; p, ¢ -- ¢;) = f_o(Oi, p) + 2 _ fcm(Oi, p)cos[m(¢ -- ¢i)]

f.(Oi;p,¢_ ¢i) = 2j _ f.m(Oi,p)sin[rn(¢- ¢i)]
m--1

(6.166)

(6.167)

(6.168)

(6.169)
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with the corresponding Fourier coefficients

fo R
1 eJkopsinO' ¢o_,, cos(mu)du

f_(Oi' P)= r

1 fo "_ ueJkoosinO' _o_,_cos(rnu)du-- COS
f_"(Oi'P) = r

/o".f,m(O',p) = -j sin ue jk°p'i"°' ¢°s" sin(mu)du
7f

(6.170)

(6.171)

(6.172)

Comparing these to the Bessel function identities

1 fo" eJa¢°'* cos(mx)dxj"Jm(_3) = r

/o1 cos xd _°_ cos(mx)dx
Jm-lJ'(/3) = r

= sinxej  °' sin(mx)dx

(6.173)

(6.174)

(6.175)

where the last two are derived from the first by differentiation with respect to/3 and

integration by parts respectively, we conclude that

fm(Oi, p) = jmJm(kopsinO i) (6.176)

f_(Oi, p) = j_-'J'(kopsinO') (6.177)

m

f_m(0i, p) - kopsinOifm(Oi,p) (6.178)

Using these, along with (6.163) - (6.165) in (6.159) and (6.160), the Fourier coeffi-

cients of (6.161) and (6.162) are found to be

_,,,¢(0i; p,z) = ejk°z¢°*°' [_Lm(Oi, p) + Cf_,,(Oi, p)] (6.179)

_mo(Oi;p,z) = eJkozcosO ' [_fcm(Oi, p) cosO i _ dpf, m(Oi,p) cosO i- Z.fm(Oi,p) sinO i]

(6.180)

or, using (6.166),

_0(0i; p, ¢ -- ¢i, z) = e jk°zc°*e_ [_2j
[

Y_ Lm(Oi,p)sin[m(¢ - ¢i)1
m=l
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]+ _Lo(e',p)+ _2 _ f_(0;,p) co_[r_(_-¢)]
rn.----1

_o(O_;p, 4,- ¢_,z) = d _°'_°'e'

{_ cos0i

- ¢ cos pl

- _ sin 8i

(6.181)

]Lo(O_,p)+ 2 _ f_(o',p)cos[_(¢- ¢')]
m=l

,oo ]2j Y_ f,m(O',p)sin[rn(¢- ¢')] (6.182)
rn-----.1

Io(O_,p)+ 2 _ fm(0',p) cos[m(¢- ¢')]
m=l

The modal coefficients K,,,0 and _,,,# can now be used for determining the harmonic

coefficients of the incident and magnetic fields. For TEz incidence, we have

_m = _,.# (6.183)

h"._ = K_o (6.184)

and for TMz incidence

_/,_ = -_o (6.185)

_ =3,.,,¢ (6.186)

More explicitly and in component form

i _. eJko * co6 0 ie..¢ L..(¢,p)

hi,,¢ = f,_(O i, p) cos O' e jk°z¢='°'

i
e,,.,t = .f,,,,( Oi, p) sinv e ik*'¢*'°'

h_t = [f,,,(Oi, p)sinO i cos.- f_(Oi,p)cosO i sinv] ejk°z¢°_a'

(6.187)

(6.188)

(6.189)

(6.190)

for TE_ polarization and

i = -f_,n(O i,p) cosO i e jk°'c°_°'em¢

h_ = f_.(O _,p) d k°'_°'°'

(6.191)

(6.192)
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; =[ , ]e,,,t f_(Oi, p)cosOi sinv - f,,,(O i p)sinOi cosv e jk°zc°_°'

hi_t = f_m(Oi, p) sinv eJko"_°_°'

(6.193)

(6.194)

for TMz polarization, where v is the angle between the z-axis and the vector _; in

the p - z plane. The corresponding potential forms are obtained by multiplying the

previous expressions by R = kop.

6.4.2 An Electric Dipole Source

An k-directed electric dipole of moment 3:4re/k 3 located at a point Zo on the

z-axis is given by [26]

e-JR°[kr(kr-kzocosO) 3 3j 1) j 1 ]Er - Ro /_ (_ + _ Ro P_ + 1 sin 0 cos ¢ (6.195)

Eo= e-JP'°[ krkz°sin_O 3_- [ R_ (_+_3J-1)-(_+_J 1 -1) c°s0] c°s¢

E¢- Ro _+_-1 sine

.e-in° [ j 1]rlHr = 3----_ -_ + -_ kzosin Osin ¢

e-J_ [ j 1](kr_ kzocosO)sin¢rlH e = j---_-- -_ + -_

rlH¢ = 3----_ -_ + (krcosO- kzo)cos¢

(6.196)

(6.197)

(6.198)

(6.199)

(6.200)

where

Ro = kCr _ sin s 0 + (r cos 0 - Zo) 2 (6.201)

When using this source in connection with the current implementation, the harmonic

coefficients of the fields must first be determined. This may be done rather trivially

by noting the identities

eJ6 -- e-.i¢

sin ¢ = 2j (6.202)

e j¢ + e -j¢

cos ¢ -- 2 (6.203)
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Introducing these into (6.195) - (6.200) and comparing with (6.161) and (6.162) we

find (on setting ¢i = 0) that

ern0 m

e -j_ [kr(kr- kZoCOSO) 3 3j _ 1) J 1 ]2Ro It_ ('_+'_ Ro p,_ +1 sinO

3j_ x -

e-jR" r J 1 _ 1]_= -JS-£-t_ + _

£]h,,,, = 2"--_- "-_ + kzo sin 0

hme= e-JP_[j2-'-_ _+_1] (kr-kz°c°sO)

1 ] (kr cos 0 - kzo)+_
e-j,%

(6.204)

(6.205)

(6.206)

(6.207)

(6.208)

(6.209)

where m = +1. For all other m, the coefficients are zero. Additional field components

needed in the finite element portion of the system are emt and h,,t and are given by

e,u = emr cos(O- v) - e,_0 sin(O- v)

h,,,t = hm, cos(O- v) - hme sin(O- v)

(6.210)

(6.211)

where the identities

= icos(O- o) + ,_sin(0 - v)

0 = -isin(0 - v) + i cos(0- v)

(6.212)

(6.213)

have been involved in deriving (6.210) and (6.211).

6.5 Scattered Field Computation

Once the modal coefficients are determined from the solution of (6.76), the goal is

to proceed with the determination of the scattered or radiated field. In the following,

the evaluation of these from a knowledge of the modal scattered field coefficients is

discussed.
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The scatteredfields in the far zonearegiven by

-E'(_) = E,_(r)¢+ ,}oH¢(r)O

,7o-_+(_)= ,7oH+(_):_-E+(_)_

(6.214)

(6.215)

These involve the ¢ components of the electric and magnetic fields and these are

related to the modal field components via the Fourier series as

M

E_(r,O,¢) = 2j ___ e_+(r,O)sin(m¢)

M

_oH_,(r, O, ¢) = h;(r,O) + 2 _ h_¢(r,O)cos(,,¢)
m=l

(6.216)

(6.217)

and that for the 0-polarized receiver, and by the series

M

E_(_,O,¢) = 4(_,0) + 2 _ _2_(_,0)cos(me)
m:l

M

r/oH_(r, 0,¢) = 2j y_ h_c(r,O)sin(rn¢)
m-_._l

(6.218)

(6.219)

for the C-polarized receiver. For a unity amplitude incident field, these imply the

radar cross section formulae (2.33)

'1 + Ia6¢ = lira _ _ + 2 y_+ _6(r,O)cos(m¢) (6.220)
m----1

1 -+
= _-._ h,_,(,-,O)cos(me) (6.221)a4,o lim _ hoe + 2 _ ++

_-._ _ 2 _ _;,A,',O)sin(m¢) (6.222)
m=l

,i + iaoo = lijn-_ 2 y_ _,(r,O)sin(rn¢) (6.223)
m----1

where

~$ $
em¢ = 4rr em¢ (6.224)

h_¢ = 4:rr h_¢ (6.225)
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The evaluation of e_# and h_# in the far zone using the near field values.

The Stratton-Chu integral equation used for calculating the scattered fields was

discretized in section 6.3.2. For the potential distribution computed by solving the

system (6.76), and these values are known on any path F! passing through the

solution region fl and which encloses the scatterer. By subdividing FI into N l

contour (boundary) elements, the scattered field may be expressed in a form similar

to (6.136) as

_,,=[P, P, Q_ Q,]
Ch

_'L J

where

NI 2

P, = E E{e,};'
e'=l j=l

N/ 2

Q, = E E(Q,};'
e*=l j=l

N! 2

e, = Z Z{P,};'
e'=l j=l

NI 2

Q,= E E(Q,};'
e'=l j=l

and in which

= -- N_' [/_ cos v'g_ )'- Rcosv'#' m + (Z - Z')sinv'g_)']dr '
ko ao

e I

_Q')_"=_o_"]o_ (_;'p_nv'_']-(_o_,,,_.,_,[,_,_,,]}_,
{p,_;, 2,_f,,,'= _o,o u;'[j(z- z')g_)'],t,'

{Q,};., 2r fa,' jmg_),]dr '=_o_o u;'[g_)+

(6.226)

(6.227)

(6.228)

(6.229)

(6.230)

(6.231)

(6.232)

(6.233)

(6.234)
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which must be specialized for far zone (r --_ c_) computations. In deriving expres-

sions for the far fields, the argument of the Green's function is replaced by its usual

far zone approximation

k = _/R _ + R '2 - 2RR'cosu + (Z - Z') 2 ~ kor - Z'cos0 - R'cos_,sinO (6.235)

where

Z = kor cos 0 (6.236)

R = kor sin 0 (6.237)

The Green's function and its derivative may then be written as

c-Jk° _ ej(Z'¢o, 0+R' ¢os,,,in 0) (6.238)
g"_ 47r-----_

10g j

hob ~ ko,:g (6.239)

and when these are used in (6.118) - (6.122), we obtain

e-Jkor

gO) ,'., f_,,,(O,R') e jz'¢°s° (6.240)
4rr

g_) ,.., e -i_"4rr 1,_(0,/_) e jz'':°'° (6.241)

, J e-jk°r

gm~ kor 47rr fm(O,R') e jz'¢°_° (6.242)

g_)' ~ J e-"k°_f_(O,R') e jz'c°_° (6.243)
kor 4rr

g_), ,_ 1 e-/k°r
kor 4rr f,m(O,R') e jz'c°s° (6.244)

where

fm(O,R') = j"J_(R'sinO)

.,,,-i,, ,.., .----3 Jm(1_ sin 0)

m

Lm(O,R')- R, sinOfm(O,R')

(6.245)

(6.246)

(6.247)
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_ element e

__._ boundary element e'

IR lf'Z

• z

Figure 6.5: The configuration of a typical boundary element e' passing through tri-

angular element e

Furthermore, substituting (6.236) and (6.237) into (6.231) - (6.234) yields

•e-ikor fa,, N;'(r')[cos 0 sin v'f_ - sin 0 cos v'fm] eiZ'¢°_°dr' (6.248)
{P_,};''" -3 2--_or : °

e
~ 32--_or Jo N;'(r')sinv'Z. dz'c°'°dr ' (6.249)

• e -3kOr fAel

{P'}_' "-3"_-_or ao Nf (r')cosOf.m eJZ'¢°'°dr ' (6.250)

{Qt};' ~ --e-Jk°"fa"N;'(r')f_ e:Z'¢o'°dT' (6.251)
2kor ao

If e,nt_ and hSt are not known on FI, then they must be computed by numeri-

cally differentiating the potentials for each triangular element traversed by F I. For

convenience, it is assumed that the e'th boundary element passes through the eth

triangular as indicated in Fig. 6.5 (i.e., the boundary element must begin at one

edge of the triangle and end on another). In this case, e_t is found by first taking

the dot product of fi' (the outward normal of FI) with (6.22) to obtain

jest = -fm[m [" Vt¢_- R h-V¢],] (6.252)
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Since in the eth triangular element

{¢:F=Z,N;{¢:};
j=l

(6.253)

we have

v,{¢;}e= _ v,AT{¢:};
j=l

(6.254)

where

N; = ,_;+ /3;Z +-_;R
2_ _

VtN; = /3;_ + "t;[_

(6.255)

(6.256)

Further, on noting the identities

(6.257)

the derivatives can be written more explicitly as

3 • Ut e V'

fi'-Vt{q,:}" = _ -/3; sin + 73 cos t¢'_, " (6.258)
j=l 29t" " _ "j

3 • e

i'. V,{¢:}" = _/3_ cosy' + 7_ sinv' /¢'_, _ (6.259)

A similar procedure is used for h'. Vt{¢],} e and ['. Vt{¢],}* and substituting these

into (6.252) gives

R_ Ct{ )j+. . ., =

R Ct . _ t O _{ }j+_{_h..,b+½ e' 2

[{n}j+_] -

RI,' fi'[m['. Vt¢:-{ sj+_ • XT_/,_] (6.260)
m 2

• R _*' fi'. _/e](6.261)m 2 [m[' V,¢_,+{ lj+½ V ,_

where {/i_'+½} is introduced to express the left hand side as an azimuthal potential.

The second of these is derived by a similar procedure, or via duality. For the special

case of FI coinciding with F_, then the e_, t and h_t are computed during the system

solution. Then the need to compute the {- components is unnecessary.
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6.6 Code Validation and Performance

In this section, the numerical implementation of the FE-BI method is evaluated

in terms of storage and computational efficiency and accuracy. Also, the method for

eliminating the boundary integral resonances presented in chapter V is tested here

for spherical enclosures. Finally, the scattering from several structures is presented

for validation purposes.

6.6.1 Storage Efficiency

This implementation of the FE-BI method discussed in this chapter differs from

the two-dimensional FE-BI formulation discussed earlier in that arbitrarily shaped

mesh terminations are allowed. As a result, an increased storage efficiency is not

obtained from the convolutional properties of the boundary integral operator, but is

instead realized by exploiting matrix symmetries. It is, nevertheless, understood that

the controlling factor in the storage of large FE-BI systems is the dense boundary

integral subsystem, which grows as O(n 2) for n unknowns on the boundary, while

the interior FE system grows as O(N) for N unknowns in the interior region.

It is possible, however, to choose an enclosure on which some of the integrals

are convolutional. The Green's function in (6.93) appearing in the integrand of the

integral equations (6.91) is a function of the distance between the source and field

points, which when expressed in cylindrical coordinates takes the form

el =  /p2+ _ 2pp,cos(¢- ¢,)+ (z - z,)= (6.262)

After employing the Fourier series expansion of the field quantities and Green's func-

tions, the azimuthal dependency is removed and the result is given by (6.128). This

expression is a convolution only on contours parallel to the z-axis. Consequently,
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a suitable enclosure is rectangular in shape, generating a right circular cylinder in

three-dimensional space. Though analogous to the two-dimensional rectangular en-

closure explored in chapter III, the integrals are in the form of convolutions only

when source and observation points lie on the portion of F_ which is parallel to

the z-axis. All remaining terms are considered "cross terms" and must be stored

efficiently, relying on symmetry to achieve this goal.

The discrete version of a typical boundary integral equation block matrix (of Lt,

say) has the form

all a12 a13

a21 _222 {223

a31 a32 a33

(6.263)

where the subscripts of apq denote the observation on side p and source on side q of

the rectangular boundary (the z-axis is not applicable to the boundary integral). As

a consequence of the convolution, a2_ is Toeplitz in form and, effectively, only the

first row need be stored when an FFT is employed to evaluate the associated matrix-

vector products. For a22 to dominate the storage requirement of the BI system, the

enclosure must be long with respect to its radius. For scatterers not satisfying this

requirement, the reduction of a_2 is not substantial. Consequently, the method was

abandoned in favor of a general conformal boundary.

To determine the storage requirement for a general boundary, it is first noted that

each matrix in the BI subsystem of (6.148) need only be stored once. Additionally,

after examining (6.141) - (6.144) Mt and Lt are the only symmetric matrices. Thus,

for n nodes on the boundary the storage for the each of the symmetric matrices

is n(n + 1)]2 and that for the unsymmetric matrices is n 2. The overall storage

requirement of the BI matrix is then n(3n - 1). Though this continues to be O(n_),
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the constant in front is reduced from 8 to approximately 3. For the particular case

of a purely smooth metallic scatterer, the full storage requirement of the standard

surface integral equation (SIE) for BOR structures is 4n 2, slightly less than that of

the FE--BI system. However, for structures such as a corrugated cylinder, n becomes

very large for the SIE but in the case of the FE-BI method, the termination boundary

may be chosen to occupy a minimum path and thereby minimizing the associated

storage requirement.

In passing we note that it is possible to optimize the storage by choosing the

termination boundary far enough from the scatterer so as to reduce the sampling the

requirement of the boundary integral (which grows as O(n2)), but without substan-

tially increasing the storage associated with the additional elements required in the

finite element region (which grows as O(N)). This is particularly useful for structures

containing very thin high contrast material layers, in which case a strictly conformal

boundary would result in a large number of unknowns on the boundary.

For a given amount of data storage space, S [bytes], the maximum allowable

length l of the termination boundary depends on the uniform sampling rate A as

l = nA (6.264)

The single precision (8 bytes) storage requirement for the discrete boundary integral

thus becomes

S = 24 (6.265)

and then solving for the length,

l= A_ (6.266)

Thus, if S = 10 megabytes and A = A/20

l __ 32A (6.267)
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This represents an upper limit on l given the memory and sampling rate without

regard to the finite element storage nor the overhead associated with the geometry

l
and solution storage, which mutually grow as O(N). Consequently in practice, n =

must be reduced until the storage of the entire model is accomodated, a requirement

which depends on the scattering body.

6.6.2 Computational Efficiency and Accuracy

The FE-BI system given by (6.148) is solved via the conjugate gradient method.

It is well known that the rate of convergence is proportional to _2, where t¢ is the

condition number of the matrix. Clearly, those factors which influence _ must be

examined, since in part, cpu time of the solver and subsequently the accuracy of the

solution depends on this.

Since the FE-BI system is comprised of two incomplete subsystems, it is expected

that the weakness from each portion contributes to a reduction in _. Among those

due to the finite element subsystem, are the shape and size of the element, and

also the lines of singularity at Ro = _ for real _, discussed previously. Elongated

elements yield larger matrix values than an equilateral triangle of the same area, and

the line singularities produce matrix values roughly two orders of magnitude larger

than the average matrix value. The combination of large and small matrix elements

can undermine the condition of the matrix.

Those factors influencing the BI portion are the element size and the total number

of boundary elements. Elements which are very small (< 0.01A) result in subsequent

rows which are nearly equal and give the appearance of a singular matrix. Large

dense systems are known to have a smaller n simply because of the number of matrix

elements.
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Figure 6.6: The mesh used for the frequency sweep of a conducting sphere is shown in

(a) and the expanded region shows the values of ka at which the line sin-

gularity intersects the nodes. The frequency sweep in (b) demonstrates

the inaccuracies associated with the line singularities
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Figure 6.7: A sphere coated with #, = e, = 1 - j5 is swept in frequency

The issue of accuracy, which is closely tied to the issue of system condition,

is examined as a function of frequency for two spheres. Each is comprised of a

conductor of radius a with a mesh termination at ao = 1.02a. The second sphere

contains dielectric material with e, =/_, = 1 - j5 in the finite element region. As

seen in Fig. 6.6, there are locations where the solution has a large error with respect

to the exact result [27], plotted as a function of the outer radius normalized to the

free space wavenumber k0. The vertical lines denote the regions of greatest change,

and from (a), it is clear that the edge of an element is nearly parallel to this line. This

problem, discussed previously in section 6.2.3, is due to the fact the matrix elements

are becoming large and the sensitive cancellation required is not occurring accurately.

When a lossy coating is introduced, the line-singularity is no longer present, and as

shown in Fig. 6.7, the results follow quite well with the moment method data.
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6.6.3 Elimination of the Internal Resonance Corruption of the Boundary

Integral

The corruption of the solution due to interior resonances of the boundary integral

perseveres in the three-dimensional case. The approach taken in chapter 3 is also

employed here. It is again shown that for the coated sphere test structure, the

"complexification" of the wavenumher in conjunction with the scattered field FE-BI

formulation successfully removes the resonances. Since the theory surrounding the

method was previously presented, it will not be repeated here.

Consider the conducting sphere of radius a enclosed in a boundary of radius

ao = 1.02a and _r = 2-j4. Shown in Fig. 6.8 is (r as afunction of kao of the

outer boundary for axial incidence and observation (thus requiring the solution for

the m = 1 mode). Clearly, the expected resonances indicated by the vertical lines

are present and are evident in the solution for ¢r = 1 by the spiked behavior, except

at koao _ 10.6 at which the resonance is shifted due to numerical errors. These are

eliminated by setting k = ak0 and the results for a = 0.005, c_ = .007 and c_ = .01

are presented in the same figure. As seen by these it is clear that the solution is

relatively insensitive to a.

6.6.4 Scattering from Various Test Bodies

To validate the code, bistatic scattering patterns are considered in the four various

sample targets. In each case the radar cross section in (2.33) is computed and the

results are compared to a moment method solution [25, 19]. Most of the cases

considered involve axial incidence (along the z-axis) and in this case TEa and TM:

no longer have meaning. Planes defined by the electric field vector and the z-axis

form the E-plane, and the magnetic field vector and the z-axis form the H-plane.
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Figure 6.8: The axial backscatter cross section is displayed as a function of normal-

ized radius koao. The structure is a conducting sphere of radius a coated

with a dielectric with er = 2 -j4 has an outer radius of ao = 1.02.

Employing a complex wavenumber k = k0a, the resonance behavior is

removed for the complex values in comparison to the a = 1 case
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The patterns shown are computed in these planes.

First we consider the scattering from a coated conducting sphere of radius 0.098m

with a O.02m coating with _, = 2-j4. Fig. 6.9a demonstrates the convergence of the

solution as more Fourier harmonics are summed together, and shown are the partial

sums up to m=10. Fig. 6.9b shows the final converged result of the (a) (plotted on a

scale shifted by -60 degrees to coincide with the pattern due to axial incidence) along

with the axial incident result (requiring only m=l). Only the E-plane patterns were

computed. A comparison to a method of moments result demonstrates agreement.

Next we consider the scattering from a perfectly conducting sphere of radius 1)_

as indicated in Fig. 6.10. Both E-plane and H-plane patterns are included and the

comparison with moment method results is favorable.

In Fig. 6.11 is shown the patterns for a 2A x 0.176A perfectly conducting ogive

with a dielectric coating of thickness 0.05A with e, = 2 - j2, shown for an axially

incident plane wave. Both E-plane (TEz) and H-plane (TMz) are shown along with

data generated via the moment method.

Next we consider the case of a coated sphere-capped cone frustum, the mesh of

which is indicated in Fig. 6.12. The structure is 4A in length, the spheres are of

and the coating thickness _. Additionally, the material is dielectricradii 1A and

with _, = 4 -j5. The bistatic cross section computed for this structure for an

axially incident plane wave is indicated for TE, (or E-plane) and TM, (or H-Plane)

incidence in Fig. 6.13. Reference data provided indicates a good agreement.
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Figure 6.9: The bistatic scattering pattern for a coated sphere. (a) Shows the sum-

mation of modes converging to the correct solution for an incidence of

60 degrees. The converged solution for modes 0-10 at 60 degrees (plot-

ted on a scale shifted by -60 degrees to coincide with the pattern due to

axial incidence) shown with the axial incident result and a comparison
to moment method results
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Figure 6.12: The mesh of the sphere-capped cone frustrum
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We have presented the finite element - boundary element formulation for axially

symmetric bodies. The storage requirement associated with the boundary integral

was reduced by symmetry considerations. Several patterns were generated to demon-

strate the validity of the method, and the model shortcomings were presented as well.

Also, a method for eliminating the problem of the line singularity inherent in the

CAP finite element formulation was given and was shown to give real matrices for

lossless structures. It should be noted that frequency sweeps and single mode radia-

tion problems make the most efficient use of the employed CG solver. The method

is not well suited, however, to problems incorporating multiple excitations or those

requiring many Fourier modes.



CHAPTER VII

Conclusion

7.1 Summary

In this thesis, the FE-BI technique (presented in general terms in chapter II)

was developed for two-dimensional and axially symmetric structures. The two-

dimensional case was based on the moment-method version developed by Jin [9].

An FE-BI formulation for rectangular enclosures was developed in Chapter III and

lead to simple boundary integrals some of which had convolutional form which was

exploited for reducing the memory requirement. In chapter IV, circular and ogival

enclosures were considered. For the circular boundary, the boundary integral was

entirely convolutional in form and an O(N) storage requirement was thus achieved

at all times. It was shown that circular enclosures are consequently preferred for

storage efficiency if the structure's outer boundary does not substantially deviate

from a circle.

In chapter VI, the FE--BI formulation was developed for axially symmetric struc-

tures. The finite element method for this problem was based on the CAP equations

for generating the FE matrix system, and a boundary integral equation was used for

the boundary condition on an arbitrarily shaped mesh termination boundary. Conse-

quently the boundary integrals were no longer convolutional and a storage reduction

150
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was, instead, achieved by exploiting certain symmetry properties of the boundary

integral subsystem. Also, a new method was presented for circumventing the singu-

larity problem associated with the CAP equations in the finite element portion of

the system.

A method was developed in chapter V for eliminating the internal resonance cor-

ruption of the solution, a difficulty found with most boundary integral formulations.

These resonances correspond to the eigenvalues of the integral operator, and may

be also viewed as the cut-off frequencies of a resonator with conducting walls of the

same shape as the mesh termination boundary. Because the eigenvalues become very

closely spaced for electrically large structures, any scattering computations become

unreliable unless the resonances are suppressed.

In summary, specific contributions of this work include the development and

implementation of the FE-BI for rectangular, circular and ogival boundaries as de-

scribed in chapters III and IV in a manner taking advantage of storage reduction

schemes. A new method was also presented for suppressing resonance corruptions

existing in almost all implementations employing some form of a boundary integral

equation over a closed surface or contour. This method involved the introduction of

a complex wavenumber and was demonstrated for both 2-D and axially symmetric

bodies. The implementation of the FE-BI method for axially symmetric structures

as described in chapter VI was for the most part new and incorporated a scheme

for treating the line singularity associated with the CAP equations. This resulted in

real matrices for lossless scatterers, a property consistent with 2-D and 3-D imple-

mentations of the finite element method.
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7.2 Future Work

The FE-BI technique presented in this work remains a promising technique for

computing the scattering from ever larger structures. However, as the structure

increases in size, so does the condition number of the resulting system due in part

to its size. To reduce the number of unknowns, higher order basis functions must

be used. For electromagnetic scattering, bases formed with hierarchical functions [5]

show promise. Instead of standard functions, in which each undetermined coefficient

corresponds to an unknown field quantity, those associated with the hierarchical

function are comprised of both field quantities and field errors. For instance, a

quadratic hierarchical function for a one-dimensional element takes the form

2

¢ = _ N_(x)¢_ + af(x) (7.1)
j----1

where f(x) is an arbitrary quadratic function, and the coefficient cr is proportion to

the deviation of the linear approximation to the quadratic one. Clearly, as higher

order terms are added to the sum in (7.1), the smaller the coefficients become. Fur-

thermore, the quadratic function f(x) may be chosen to be approximately orthogonal

to polynomials of different order. Thus, in a finite element implementation, the off

diagonal elements may become very small increasing the diagonal dominance of the

matrix and leading to better matrix conditioning.

The above idea can be extended to include functions other than polynomials. The

physical optics solution could be employed as the fundamental solution and linear (or

higher order polynomials) functions could then be employed as correcting functions.

That is, the unknown coefficients in the solution would then be the deviation of the

physical optics solution from the actual one. This could consequently aid in reducing

the number of unknowns, particularly if the original approximation was reasonably
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good. Note that this techniqueis applicablefor the discretization of the boundary

integral and finite elementequations.
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